Skip to main content
Log in

The study of ferrierite zeolite synthesized by using silica sol modified by HCl as silica source for the skeletal isomerization reaction of 1-butene

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A strategy has been developed for the synthesis of ferrierite (FER) zeolites possessing strong acid sites (SAS) with different strength by using silica sol modified by different amounts of hydrochloric acid (HCl) as silicon source. The effect of HCl-modified silica sol on FER zeolite was investigated by XRD, ICP-AES, SEM, N2 adsorption–desorption, NH3-TPD and Py-IR. Moreover, some typical samples were evaluated in the reaction of 1-butene skeletal isomerization and the coke properties of the deactivated samples were analyzed by TG-MS and Raman spectroscopy. The results revealed that FER zeolite possessing weak SAS has excellent catalytic performance in the reaction of skeletal isomerization of 1-butene. Whereas FER zeolite with moderate SAS exhibits poor stability. By contrast, FER zeolite exhibiting SAS with high strength is easy to promote oligomerization-cracking reaction and reduce isobutene selectivity. Conversely, these findings also confirmed the effectiveness of the strategy for controlling the strength of SAS of FER zeolite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lee Y, Park MB, Kim PS, Vicente A, Fernandez C, Nam IS (2013) Synthesis and catalytic behavior of ferrierite zeolite nanoneedles. ACS Catal 3:617–621

    Article  CAS  Google Scholar 

  2. Park SJ, Jang H-G, Lee K-Y, Cho SJ (2018) Improved methanol-to-olefin reaction selectivity and catalyst life by CeO2 coating of ferrierite zeolite. Microporous Mesoporous Mater 256:155–164

    Article  CAS  Google Scholar 

  3. Park J-H, Kim B, Shin C-H, Seo G, Kim SH, Hong SB (2009) Methane combustion over Pd catalysts loaded on medium and large pore zeolites. Top Catal 52:27–34

    Article  Google Scholar 

  4. Li YJ, Armor JN (1994) Selective reduction of NOx by methane on Co-ferrierites.1. React Kinet Stud J Catal 150:376–387

    CAS  Google Scholar 

  5. Park SY, Shin C-H, Bae JW (2016) Selective carbonylation of dimethyl ether to methyl acetate on ferrierite. Catal Commun 75:28–31

    Article  CAS  Google Scholar 

  6. Martínez C, Corma A (2011) Inorganic molecular sieves: preparation, modification and industrial application in catalytic processes. Coord Chem Rev 255:1558–1580

    Article  Google Scholar 

  7. Margarit VJ, Díaz-Rey MR, Navarro MT, Martínez C, Corma A (2018) Direct synthesis of nano-ferrierite along the 10-ring-channel direction boosts their catalytic behavior. Angew Chem Int Ed 57:3459–3463

    Article  CAS  Google Scholar 

  8. Marquez-Alvarez C, Pinar AB, Garcia R, Grande-Casas M, Perez-Pariente J (2009) Influence of Al distribution and defects concentration of ferrierite catalysts synthesized from Na-free gels in the skeletal isomerization of n-butene. Top Catal 52:1281–1291

    Article  CAS  Google Scholar 

  9. Onyestyák G (2007) Skeletal isomerization of butene over natural ferrierite. React Kinet Catal Lett 90:179–186

    Article  Google Scholar 

  10. Al-Megren HA, Barbieri G, Mirabelli I, Brunetti A, Drioli E, Al-Kinany MC (2013) Direct conversion of n-butane to isobutene in a membrane reactor: thermodynamic analysis. Ind Eng Chem Res 52:10380–10386

    Article  CAS  Google Scholar 

  11. Jo D, Lee K, Park GT, Hong SB (2016) Acid site density effects in zeolite-catalyzed 1-butene skeletal isomerization. J Catal 335:58–61

    Article  CAS  Google Scholar 

  12. He M, Zhang J, Liu R, Sun XL, Chen BH, Wang YG (2017) Density functional theory studies on the skeletal isomerization of 1-butene catalyzed by HZSM-23 and HZSM-48 zeolites. RSC Adv 7:9251–9257

    Article  CAS  Google Scholar 

  13. de Jong KP, Mooiweer HH, Buglass JG, Maarsen PK (1997). In: Bartholomew CH, Fuentes GA (eds) Study Surface Science Catalysis. Elsevier, Amsterdam

    Google Scholar 

  14. van Donk S, Bitter JH, de Jong KP (2001) Deactivation of solid acid catalysts for butene skeletal isomerisation: on the beneficial and harmful effects of carbonaceous deposits. Appl Catal A 212:97–116

    Article  Google Scholar 

  15. Comelli RA, Finelli ZR, Figoli NS, Querini CA (1997). In: Bartholomew CH, Fuentes GA (eds) Study Surface Science Catalysis. Elsevier, Amsterdam

    Google Scholar 

  16. Finelli ZR, Querini CA, Figoli NS, Comelli RA (1999) Skeletal isomerization of 1-butene on ferrierite: deactivation and regeneration conditions. Appl Catal A 187:115–125

    Article  CAS  Google Scholar 

  17. Brasco GN, Comelli RA (2001) Deactivation of ferrierite during the skeletal isomerization of linear butenes. Catal Lett 71:111–115

    Article  CAS  Google Scholar 

  18. Khitev YP, Ivanova II, Kolyagin YG, Ponomareva OA (2012) Skeletal isomerization of 1-butene over micro/mesoporous materials based on FER zeolite. Appl Catal A 441–442:124–135

    Article  Google Scholar 

  19. Liu W, Hu HQ, Ke M, Liu Y, Zhang L, Xia CJ (2019) Synthesis of nano-hierarchical ferrierite with sole template and its catalytic application in n-butene skeletal isomerization. Chem Select 4:9972–9977

    CAS  Google Scholar 

  20. Hu YF, Xu CY, Zhang HY, Wang YY, Deng J, Zhang HS (2017) Catalytic performance of ferrierite with different crystal grain sizes during skeletal isomerization of 1-butene. Chem Select 2:3408–3413

    CAS  Google Scholar 

  21. Hu Y, Liu L, Zhang H, Hu L, Zhang C, Zhang H (2014) Effect of crystal size on the skeletal isomerization of n-butene over H-FER zeolite. React Kinet Mech Cat 112:241–248

    Article  CAS  Google Scholar 

  22. Bauer F, Karge HG (2007). In: Karge HG, Weitkamp J (eds) Characterization II. Springer, Berlin

    Google Scholar 

  23. Canizares P, Carrero A (2000) Comparative study of the catalytic properties of ferrierite zeolite exchanged with alkaline earth metals in the skeletal isomerization of n-butene. Catal Lett 64:239–246

    Article  CAS  Google Scholar 

  24. Cejka J, Zilková N, Tvarozová Z, Wichterlová B (2019). In: Derouane EG, Haber J, Lemos F, Ribeiro FR, Guisnet M (eds) Catalytic Activation and functionalisation of light alkanes: advances and challenges. Springer, Dordrecht

    Google Scholar 

  25. Finelli ZR, Querini CA, Comelli RA (2003) Skeletal isomerization of linear butenes on tungsten promoted ferrierite. Appl Catal A 247:143–156

    Article  CAS  Google Scholar 

  26. Finelli ZR, Querini CA, Figoli NS, Comelli RA (2001) Tungsten promoted ammonium and potassium ferrierite: deactivation during the skeletal isomerization of linear butenes. Appl Catal A 216:91–101

    Article  CAS  Google Scholar 

  27. Xu WQ, Yin YG, Suib SL, Edwards JC, O’Young CL (1996) Modification of non-template synthesized ferrierite/ZSM-35 for n-butene skeletal isomerization to isobutylene. J Catal 163:232–244

    Article  CAS  Google Scholar 

  28. Zhang L, Liu SL, Xie SJ, Xu LY (2012) Organic template-free synthesis of ZSM-5/ZSM-11 co-crystalline zeolite. Microporous Mesoporous Mater 147:117–126

    Article  Google Scholar 

  29. Li Q, Mihailova B, Creaser D, Sterte J (2001) Aging effects on the nucleation and crystallization kinetics of colloidal TPA-silicalite-1. Microporous Mesoporous Mater 43:51–59

    Article  CAS  Google Scholar 

  30. Mintova S, Valtchev V (2002) Effect of the silica source on the formation of nanosized silicalite-1: an in situ dynamic light scattering study. Microporous Mesoporous Mater 55:171–179

    Article  CAS  Google Scholar 

  31. Warzywoda J, Dixon AG, Thompson RW, Sacco A, Suib SL (1996) The role of the dissolution of silicic acid powders in aluminosilicate synthesis mixtures in the crystallization of large mordenite crystals. Zeolites 16:125–137

    Article  CAS  Google Scholar 

  32. Chida T, Niibori Y, Tochiyama O, Mimura H, Tanaka K (2004). In: Hanchar JM, Stroes Gascoyne S, Browning L (eds) Scientific basis for nuclear waste management XXVII. Springer, Cambridge

    Google Scholar 

  33. Wang L, Xu H, Yan N, Correll S, Xu S, Guo P et al (2018) Exploring Brønsted acids confined in the 10-ring channels of the zeolite ferrierite. CrystEngComm 20(6):699–702

    Article  CAS  Google Scholar 

  34. Catizzone E, Migliori M, Aloise A, Lamberti R, Giordano G (2019) Hierarchical low Si/Al ratio ferrierite zeolite by sequential postsynthesis treatment: catalytic assessment in dehydration reaction of methanol. J Chem 2019:1–9

    Article  Google Scholar 

  35. Cheng X, Cacciaguerra T, Minoux D, Dath J-P, Fajula F, Gérardin C (2018) Generation of parallelepiped-shaped mesopores and structure transformation in highly stable ferrierite zeolite crystals by framework desilication in NaOH solution. Microporous Mesoporous Mater 260:132–145

    Article  CAS  Google Scholar 

  36. Yu Z, Li S, Qiang W, Zheng A, Xu J, Lei C (2011) Brønsted/Lewis acid synergy in H-ZSM-5 and H–MOR Zeolites studied by 1H and 27Al DQ-MAS solid-state NMR spectroscopy. J Phys Chem C 115:22320–22327

    Article  CAS  Google Scholar 

  37. Zheng A, Li S, Liu SB, Deng F (2016) Acidic properties and structure-activity correlations of solid acid catalysts revealed by solid-state NMR spectroscopy. Acc Chem Res 49:655

    Article  CAS  PubMed  Google Scholar 

  38. Yu Z, Wang Q, Chen L, Deng F (2012) Brønsted/Lewis Acid sites synergy in H-MCM-22 zeolite studied by 1 H and 27 Al DQ-MAS NMR spectroscopy. Chin J Catal 33(1):129–139

    Article  CAS  Google Scholar 

  39. Asensi MA, Corma A, Martinez A, Derewinski M, Tamhankar SS (1998) Isomorphous substitution in ZSM-22 zeolite. The role of zeolite acidity and crystal size during the skeletal isomerization of n-butene. Appl Catal A 174:163–175

    Article  CAS  Google Scholar 

  40. Houzvicka J, Nienhuis JG, Ponec V (1998) The role of the acid strength of the catalysts in the skeletal isomerisation of n-butene. Appl Catal A 174:207–212

    Article  Google Scholar 

  41. Wang J, Li J, Xu S, Zhi Y, Wei Y, He Y (2015) Methanol to hydrocarbons reaction over HZSM-22 and SAPO-11: effect of catalyst acid strength on reaction and deactivation mechanism. Chin J Catal 36:1392–1402

    Article  CAS  Google Scholar 

  42. Hu HQ, Ke M, Zhang K, Liu Q, Yu P, Liu Y (2017) Designing ferrierite-based catalysts with improved properties for skeletal isomerization of n-butene to isobutene. RSC Adv 7:31535–31543

    Article  CAS  Google Scholar 

  43. Liu W, Hu HQ, Liu Y, Zhang L, Xia CJ, Wang Q (2019) Distribution of effective ferrierite active sites for skeletal isomerization of n-butene to isobutene. Chem Select 4:7851–7857

    CAS  Google Scholar 

  44. Xu Q, Yang W, Chen Z, Ye Y, Luo Y, Street J (2018) Formation and regeneration of shape-selective ZSM-35 catalysts for n-butene skeletal isomerization to isobutene. ACS Omega 3:8202–8211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Butler A, Nicolaides CP (1993) Catalytic skeletal isomerization of linear butenes to isobutene. Catal Today 18:443–471

    Article  Google Scholar 

  46. Wang Y, Gao Y, Chu W , Zhao D, Chen F, Zhu X (2019) Synthesis and catalytic application of FER zeolites with controllable size. J Mater Chem A 7:7573–7580

    Article  CAS  Google Scholar 

  47. Guisnet M, Costa L, Ribeiro FR (2009) Prevention of zeolite deactivation by coking. J Mol Catal A Chem 305:69–83

    Article  CAS  Google Scholar 

  48. Castano P, Elordi G, Olazar M, Aguayo AT, Pawelec B, Bilbao J (2011) Insights into the coke deposited on HZSM-5, H beta and HY zeolites during the cracking of polyethylene. Appl Catal B 104:91–100

    Article  CAS  Google Scholar 

  49. Li C, Stair PC (1997) Ultraviolet Raman spectroscopy characterization of coke formation in zeolites. Catal Today 33:353–360

    Article  CAS  Google Scholar 

  50. Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (1991). In: Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (eds) The handbook of infrared and raman characteristic frequencies of organic molecules. Elsevier, Boston

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support for this work from the project of the PetroChina Innovation Foundation, China (Grant No. 2012D-5006-0403), PetroChina Technology Development (2014A-2610) and the National Natural Science Foundation of China (No. 51702044).

Funding

This study was funded by the PetroChina Innovation Foundation, China (Grant No. 2012D-5006-0403), PetroChina Technology Development (2014A-2610) and the National Natural Science Foundation of China (No. 51702044).

Author information

Authors and Affiliations

Authors

Contributions

GW and YW contributed to the conception of the study; GW performed the experiment; YH and QB contributed significantly to analysis and manuscript preparation; GW performed the data analyses and wrote the manuscript; JZ, JG and MX helped perform the analysis with constructive discussions.

Corresponding author

Correspondence to Yunfeng Hu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 880 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, G., Hu, Y., Bao, Q. et al. The study of ferrierite zeolite synthesized by using silica sol modified by HCl as silica source for the skeletal isomerization reaction of 1-butene. Reac Kinet Mech Cat 133, 309–325 (2021). https://doi.org/10.1007/s11144-021-01983-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01983-0

Keywords

Navigation