Skip to main content
Log in

Zirconium-containing metal organic frameworks as solid acid catalysts for the N-formylation of aniline with formic acid

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Porous Zr-based metal–organic frameworks (MOF-808 and MOF-808/H2SO4, UiO-66 and UiO-66-SO3H) were used as solid acid catalysts for N-formylation of aniline with formic acid (aniline/formic acid 1/2 mol/mol, 35 °C). The yield of N-formylaniline was demonstrated to depend on structure of active sites and decrease in the order: MOF-808/H2SO4 > MOF-808 > UiO-66-SO3H > UiO-66. The activity of Zr-MOFs was dependent on the key properties of solvent, i.e. polarity and basicity. The MOF-808/H2SO4 was found to be the best catalyst, resulting in the formation of N-formylaniline in 96% yield under solvent free conditions. Efficiencies of MOF-808 and MOF-808/H2SO4 were higher in comparison with H-ZSM-5, zeolite natrolite and zeolite heulandite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Scheme 3
Fig. 3

Similar content being viewed by others

References

  1. Dixneuf PH, Soulé JF (2019) Organometallics for green catalysis. Springer, Berlin

    Google Scholar 

  2. Kobayashi K, Nagato S, Kawakita M, Morikawa O, Konishi H (1995) Amberlite IR-120: a reusable catalyst for N-formylation of amines with formic acid using microwaves. Chem Lett 24:575–576

    Google Scholar 

  3. Chen BC, Bendarz MS, Zhao R, Sundeen JE, Chen P, Shen Z, Skoumbourdis AP, Barrish JC (2000) A new facile method for the synthesis of 1-arylimidazole-5-carboxylates. Tetrahedron Lett 41:5453–5456

    CAS  Google Scholar 

  4. Hartinez J, Laur J (1982) Active esters of formic acid as useful formylating agents: Improvements in the synthesis of formyl-amino acid esters, N-α-formyl-Met-Leu-Phe-OH, and formyl-Met-Lys-Pro-Arg, a phagocytosis stimulating peptide. Synthesis 11:979–981

    Google Scholar 

  5. Nasrollahzadeh M, Motahharifar N, Sajjadi M, Aghbolagh AM, Shokouhimehr M, Varma RS (2019) Recent advances in N-formylation of amines and nitroarenes using effcient (nano)catalysts in ecofriendly media. Green Chem 21:5144–5167

    CAS  Google Scholar 

  6. Blicke F, Lu CJ (1952) Formylation of amines with chloral and reduction of the N-formyl derivatives with lithium aluminum hydride. J Am Chem Soc 74:3933–3934

    Google Scholar 

  7. Reddy PG, Kumar GK, Baskaran S (2000) A convenient method for the N-formylation of secondary amines and anilines using ammonium formate. Tetrahedron Lett 41:9149–9151

    Google Scholar 

  8. Strazzolini P, Giumanini AG, Cauci S (1990) Acetic formic anhydride a review. Tetrahedron 46:1081–1118

    CAS  Google Scholar 

  9. Hill DR, Hsiao CN, Kurukulasuriya R, Wittenberger SJ (2002) 2,2,2-Trifluoroethyl formate: a versatile and selective reagent for the formylation of alcohols, amines, and N-hydroxylamines. Org Lett 4:111–113

    CAS  PubMed  Google Scholar 

  10. Djuric SW (1984) a mild and convenient procedure for the N-formylation of secondary amines using organosilicon chemistry. J Org Chem 49:1311–1312

    CAS  Google Scholar 

  11. Krishnakumar B, Swaminathan M (2011) A convenient method for the N-formylation of amines at room temperature using TiO2-P25 or sulfated titania. J Mol Catal A: Chem 334:98–102

    CAS  Google Scholar 

  12. Chen FM, Benoiton NL (1979) A general method for formylating sensitive amino acid ester. Synth 9:709–710

    Google Scholar 

  13. Fieser LF, Jones JE (1995) Organic syntheses, collect, vol III. Wiley, New York

    Google Scholar 

  14. Rostamnia S, Karimi Z (2015) Preparation and catalytically study of metal–organic frameworks of amine/MIL-53(Al) as a powerful option in the rapid N-formylation condensation in neat conditions. Inorg Chim Acta 42:133–137

    Google Scholar 

  15. Jiang J, Yaghi OM (2015) Brønsted acidity in metal-organic frameworks. Chem Rev 115:6966–6997

    CAS  PubMed  Google Scholar 

  16. Valenzano L, Civalleri B, Chavan S, Bordiga S, Nilsen MH, Jakobsen S, Lillerud KP, Lamberti C (2011) Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chem Mater 23:1700–1718

    CAS  Google Scholar 

  17. Devautour-Vinot S, Maurin G, Serre C, Horcajada P, da Cunha DP, Guillerm V, de Souza Costa E, Taulelle F, Martineau C (2012) Structure and dynamics of the functionalized MOF type UiO-66(Zr): NMR and dielectric relaxation spectroscopies coupled with DFT calculations. Chem Mater 24:2168–2177

    CAS  Google Scholar 

  18. Fu G, Cirujano FG, Krajnc A, Mali G, Henrion M, Smolders S, De Vos DE (2020) Unexpected linker-dependent Brønsted acidity in the (Zr)UiO-66 metal organic framework and application to biomass valorization. Catal Sci Technol 10:4002–4009

    CAS  Google Scholar 

  19. Jiang J, Gandara F, Zhang YB, Na K, Yaghi OM, Klemperer WG (2014) Superacidity in sulfated metal-oganic framework-808. J Am Chem Soc 136:12844–12847

    CAS  PubMed  Google Scholar 

  20. Qi Z, Chen L, Zhang S, Su J, Somorjai GA (2020) Integrating the fields of catalysis: active site engineering in metal cluster, metal organic framework and metal single Site. Top Catal 63:628–634

    CAS  Google Scholar 

  21. Liu P, Redekop E, Gao X, Liu WC, Olsbye U, Somorjai GA (2019) Oligomerization of light olefins catalyzed by Brønsted-acidic metal-organic framework-808. J Am Chem Soc 141:11557–11564

    CAS  PubMed  Google Scholar 

  22. Ramirez-Caballero G, Ardila-Suarez C, Baldovino-Medrano V, (2018) (544as) Defect engineering and sulfation of MOF-808: towards the obtainment of microporous-mesoporous structures with strong Brønsted sites for catalysis applications, 18 AIChO Annual Meeting, Pittsburgh. https://www.aiche.org/conferences/aiche-annual-meeting/2018/proceeding/paper/

  23. Jung SH, Ahn JH, Park SK, Choi JK (2002) A practical and convenient procedure for the N-formylation of amines using formic acid. Bull Korean Chem Soc 23:149–150

    CAS  Google Scholar 

  24. Jiang J, Gandara F, Zhang YB, Na K, Yaghi OM, Klempere WG (2014) Superacidity in sulfated metal-organic framework-808. J Am Chem Soc 136:12844–12847

    CAS  PubMed  Google Scholar 

  25. Biswas S, Zhang J, Li Z, Liu YY, Grzywa M, Sun L, Volkmer D, Van Der Voort P (2013) Enhanced selectivity of CO2 over CH4 in sulphonate-, carboxylate-and iodo-functionalized UiO-66 frameworks. Dalton Trans 42:4730–4747

    CAS  PubMed  Google Scholar 

  26. Gutmann V (1967) Empirical parameters for donor and acceptor properties of solvents. Electrochim Acta 2:661–670

    Google Scholar 

  27. Marcus Y (1991) The effectiveness of solvents as hydrogen bond donors. J Solut Chem 20:929–944

    CAS  Google Scholar 

  28. Reichardt C (1998) Solvents and solvent effects in organic chemistry. VCH, Weinheim

    Google Scholar 

  29. Babou F, Coudurier G, Vedrine JC (1995) Acidic properties of sulphated zirconia: an Infrared spectroscopic study. J Catal 152:341–349

    CAS  Google Scholar 

  30. Ardila-Suárez C, María D-L, Vaca LAD, Balbuena PB, Medrano VGB, Ramírez-Caballero GE (2019) Synthesis, characterization, and post-synthetic modification of a micro/mesoporous zirconium-tricarboxylate metal-organic framework: towards the addition of acid active sites. Cryst Eng Comm 21:3014–3030

    Google Scholar 

  31. Adeeva V, Dehaan JW, Janchen J, Lei GD, Schunemann V, Vandeven LJM, Sachtler WMH, Vansanten RA (1995) Acid sites in sulfated and metal-promoted zirconium dioxide catalysts. J Catal 151:364–372

    CAS  Google Scholar 

  32. Drago RS, Kob N (1997) Acidity and reactivity of sulfated zirconia and metal-doped sulfated zirconia. J Phys Chem B 101:3360–3364

    CAS  Google Scholar 

  33. Karimova NV, Luo M, Grassian VH, Benny Gerber R (2020) Absorption spectra of benzoic acid in water at different pH and in the presence of salts: insights from the integration of experimental data and theoretical cluster models. Chem Chem Phys 22:5046–5056

    CAS  Google Scholar 

  34. Kamath BV, Mehta JD, Bafna SL (2007) Ultraviolet absorption spectra: some substituted benzoic acids. J Appl Chem Biotechnol 25:743–751

    Google Scholar 

  35. Popova GY, Budneva AA, Andrushkevich TV (1997) Identification of adsorption forms by IR spectroscopy for formaldehyde and formic acid on K3PMo12O40. Reac Kinet Catal Lett 61:353–362

    CAS  Google Scholar 

  36. Mahalakshmi G, Balachandran V (2014) FT-IR and FT-Raman spectra, normal coordinate analysis and ab initio computations of trimesic acid. Spectrochim Acta Part A 124(535):547

    Google Scholar 

  37. Septawendar R, Nuruddin A, Sutardi S, Asri LATW, Maryani E, Setiawan AR, Purwasasmita BS (2019) Synthesis of one-dimensional ZrO2 nanomaterials from Zr(OH)4 precursors assisted by glycols through a facile precursor-templating method. Mater Res Express 6:065037

    CAS  Google Scholar 

  38. Getsoian A, Zhai Z, Bell AT (2014) Band-gap energy as a descriptor of catalytic activity for propene oxidation over mixed metal oxide catalysts. J Am Chem Soc 136:13684–13697

    CAS  PubMed  Google Scholar 

  39. Mukherjee M, Bandyopadhyay B, Biswas P, Chakraborty T (2012) Amine inversion effects on the IR spectra of aniline in the gas phase and cold inert gas matrixes. Indian J Phys 86:201–208

    CAS  Google Scholar 

  40. Gee Ch, Douin S, Crepin C, Brechignac Ph (2001) Infrared spectroscopy of aniline (C6H5NH2) and its cation in cryogenic argon matrix. Chem Phys Lett 338:130–136

    CAS  Google Scholar 

  41. Moon SY, Liu Y, Hupp JT, Farha OK, Moon SY (2015) Instantaneous hydrolysis of nerve agent simulants with a six-connected zirconium based metal-organic framework. Angew Chem 127:6899–6903

    Google Scholar 

  42. Bhat SU, Naikoo RA, Tomar R, Bhat RA, Malla MA, Ganie JA, Kumar N, Rao TK (2017) Synthesis of N-formylation of amines using various ion exchanged forms of zeolite-a as catalysts. Pharm Pharmacol Int J 5:151–157

    Google Scholar 

  43. Bahari S, Mohammadi-Aghdam B, Sajadi SM, Zeidali F (2012) An efficient method for N-formylation of amines using natural HEU zeolite at room temperature under solvent-free conditions. Bull Korean Chem Soc 33:2251–2253

    CAS  Google Scholar 

  44. Tajbakhsh M, Alinezhad H, Nasrollahzadeh M, Kamali TA (2016) Preparation, characterization and application of nanosized CuO/HZSM-5 as an efficient and heterogeneous catalyst for the N-formylation of amines at room temperature. J Coll Interface Sci 471:37–47

    CAS  Google Scholar 

  45. Ansari MI, Hussain MK, Yadav N, Gupta PK, Hajela K (2012) Silica supported perchloric acid catalyzed rapid N-formylation under solvent-free conditions. Tetrahedron Lett 53:2063–2065

    CAS  Google Scholar 

  46. Habibi D, Rahmani P, Akbaripanah Z (2013) N-Formylation of anilines with silica sulfuric acid under solvent-free conditions. J Chem. https://doi.org/10.1155/2013/972960

    Article  Google Scholar 

  47. Serre C, Millange F, Thouvenot C, Nogues M, Marsolier G, Louerand D, Fґerey G (2002) Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}x·H2Oy. J Am Chem Soc 124:13519–13526

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the governmental order for Boreskov Institute of Catalysis (AAAA-A21-121011390055-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria N. Timofeeva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 6348 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timofeeva, M.N., Panchenko, V.N., Lukoyanov, I.A. et al. Zirconium-containing metal organic frameworks as solid acid catalysts for the N-formylation of aniline with formic acid. Reac Kinet Mech Cat 133, 355–369 (2021). https://doi.org/10.1007/s11144-021-01982-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01982-1

Keywords

Navigation