Skip to main content
Log in

Three-phase mass transfer: theoretical development of the overall effectiveness factor for cylindrical geometries

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This work presents a theoretical analysis for predicting the overall effectiveness factor (η) for cylindrical geometries in a three-phase catalytic reaction system. Implicit expressions for \(\eta\), taking into account all the transport effects, gas–liquid mass transfer, liquid-solid mass transfer and intraparticle diffusion as well the chemical reaction were obtained. Various types of kinetics were considered; namely, Langmuir–Hinshelwood, power-law and zeroth order. The obtained results are presented as a useful tool to be used in field of reactors design and laboratory kinetics data interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

a B :

\({\text{Gas-liquid}}\,{\text{interfacial}}\;{\text{area}}\;{\text{per}}\;{\text{unit}}\;{\text{volume}}\;{\text{of}}\;{\text{reactor}}\;\left[ {{\text{cm}}^{2} \;{\text{cm}}^{-3} } \right]\)

a P :

\({\text{External}}\;{\text{area}}\,{\text{of}}\,{\text{particles}} \;{\text{per}}\;{\text{unit}}\;{\text{volume}}\;of\;{\text{reactor}}\;\left[ {{\text{cm}}^{2} \;{\text{cm}}^{-3} } \right]\)

A :

\({\text{Species}}\;{\text{A}}\;\left[ {\text{dimensionless}} \right]\)

AS :

\({\text{Species}}\;{\text{A}}\;{\text{adsorbed}}\;{\text{on}}\;{\text{the}}\;{\text{site}}\;{\text{S}}\;\left[ {\text{dimensionless}} \right]\)

B :

\({\text{Species}}\;{\text{B}}\;\left[ {\text{dimensionless}} \right]\)

BS :

\({\text{Species}}\;{\text{B}}\;{\text{adsorbed}}\;{\text{on}}\;{\text{the}}\;{\text{site}}\;{\text{S}}\;\left[ {\text{dimensionless}} \right]\)

C A :

\({\text{Concentration}}\;{\text{of}}\;{\text{species}}\;{\text{A}}\left[ {{\text{mol}}\;{\text{cm}}^{-3} } \right]\)

\(C_{\text{A}}^{*}\) :

\({\text{Concentration}}\;{\text{of}}\;{\text{A}}\;{\text{in}}\;{\text{the}}\;{\text{liquid}}\;{\text{in}}\;{\text{equilibrium}}\;{\text{with}}\;{\text{the}}\;{\text{gas}}\;\left[ {{\text{mol}}\;{\text{cm}}^{-3} } \right]\)

\(C_{\text{A}}^{*,Critical}\) :

\({\text{Critical}}\;{\text{concentration}}\;{\text{of}}\;{\text{A}}\;{\text{in}}\;{\text{the}}\;{\text{liquid}}\;{\text{in}}\;{\text{equilibrium}}\;{\text{with}}\;{\text{the}}\;{\text{gas}}\;\left[ {{\text{mol}}\;{\text{cm}}^{-3} } \right]\)

\(C_{\text{A}}^{G}\) :

\({\text{Concentration}}\;{\text{of}}\;{\text{A}}\;{\text{in}}\;{\text{the}}\;{\text{bulk}}\;{\text{gas}}\;\left[ {{\text{mol}}\;{\text{cm}}^{-3} } \right]\)

\(C_{\text{A}}^{L}\) :

\({\text{Concentration}}\;{\text{of}}\;{\text{A}}\;{\text{in}}\;{\text{the}}\;{\text{bulk}}\;{\text{liquid}}\;\left[ {{\text{mol}}\;{\text{cm}}^{-3} } \right]\)

\(C_{\text{A}}^{S}\) :

\({\text{Concentration}}\;{\text{of}}\;{\text{A}}\;{\text{at}}\;{\text{the}}\;{\text{catalyst}}\;{\text{surface}}\;\left[ {{\text{mol}}\;{\text{cm}}^{-3} } \right]\)

\(C_{\text{A}}^{S,Critical}\) :

\({\text{Critical}}\;{\text{concentration}}\;{\text{of}}\;{\text{A}}\;{\text{at}}\;{\text{the}}\;{\text{catalyst}}\;{\text{surface}}\;\left[ {{\text{mol}}\;{\text{cm}}^{-3} } \right]\)

C AS :

\({\text{Concentration}}\;{\text{of}}\;{\text{adsorbed}}\;{\text{A}}\;\left[ {{\text{mol}}\;{\text{g}}^{-1} } \right]\)

C A0 :

\({\text{Concentration}}\;{\text{of}}\;{\text{species}}\;{\text{A}}\;{\text{at}}\;{\text{center}}\;{\text{line}}\;{\text{of}}\;{\text{catalyst}}\;{\text{particle}}\;\left[ {{\text{mol}}\;{\text{cm}}^{-3} } \right]\)

C B :

\({\text{Concentration}}\;{\text{of}}\;{\text{species}}\;{\text{B}}\;\left[ {{\text{mol}}\;{\text{cm}}^{-3} } \right]\)

\(C_{\text{B}}^{L}\) :

\({\text{Concentration}}\;{\text{of}}\;{\text{B}}\;{\text{in}}\;{\text{the}}\;{\text{bulk}}\;{\text{liquid}}\;\left[ {{\text{mol}}\;{\text{cm}}^{-3} } \right]\)

C BS :

\({\text{Concentration}}\;{\text{of}}\;{\text{adsorbed}}\;{\text{B}}\;\left[ {{\text{mol}}\;{\text{g}}^{-1} } \right]\)

C E :

\({\text{Concentration}}\;{\text{of}}\;{\text{species}}\;{\text{E}}\;\left[ {{\text{mol}}\;{\text{cm}}^{-3} } \right]\)

C ES :

\({\text{Concentration}}\;{\text{of}}\;{\text{adsorbed}}\;{\text{E}}\;\left[ {{\text{mol}}\;{\text{g}}^{-1} } \right]\)

C S :

\({\text{Concentration}}\;{\text{of}}\;{\text{vacant}}\;{\text{active}}\;{\text{sites}}\;\left[ {{\text{mol}}\;{\text{g}}^{-1} } \right]\)

C T :

\({\text{Concentration}}\;{\text{of}}\;{\text{total }}\;{\text{active}}\;{\text{sites}}\;\left[ {{\text{mol}}\;{\text{g}}^{-1} } \right]\)

D E–A :

\({\text{Effective}} \;{\text{diffusivity}}\;{\text{of}}\;{\text{A}}\;\left[ {{\text{cm}}^{2} \;{\text{s}}^{-1} } \right]\)

E :

\({\text{Species}}\;{\text{E}}\;\left[ {\text{dimensionless}} \right]\)

ES :

\({\text{Species}}\;{\text{E}}\;{\text{adsorbed}}\;{\text{on}}\;{\text{the}}\;{\text{site}}\;{\text{S}}\;\left[ {\text{dimensionless}} \right]\)

H A :

\({\text{Henry's}}\;{\text{law}}\;{\text{constant}}\;{\text{defined}}\;{\text{as}}C_{A}^{G} /C_{A}^{*} \;\left[ {\text{dimensionless}} \right]\)

I 1 :

\({\text{First-order}}\;{\text{modified}}\;{\text{Bessel}}\;{\text{function }}\;{\text{of}}\;{\text{the}}\;{\text{first}}\;{\text{kind}}\;\left[ {\text{dimensionless}} \right]\)

I 0 :

\({\text{Zero-order}}\;{\text{modified}}\;{\text{Bessel}}\;{\text{function }}\;{\text{of}}\;{\text{the}}\;{\text{first}}\;{\text{kind}}\;\left[ {\text{dimensionless}} \right]\)

J :

\({\text{Gas}}\;{\text{constant}}\;\left[ {{\text{cal}}\;{\text{mol}}^{-1} \;{\text{K}}^{-1} } \right]\)

k :

\({\text{Rate}}\;{\text{constant}}\;\left[ {{\text{s}}^{-1} } \right]\)

k A :

\({\text{Species}}\;{\text{A}}\;{\text{adsorption}}\;{\text{rate}}\;{\text{constant}}\;\left[ {{\text{cm}}^{3} \;{\text{mol}}^{-1} \;{\text{s}}^{-1} } \right]\)

k −A :

\({\text{Species}}\;{\text{A}}\;{\text{desorption}}\;{\text{rate}}\;{\text{constant}}\;\left[ {{\text{s}}^{-1} } \right]\)

k B :

\({\text{Species}}\;{\text{B}}\;{\text{desorption}}\;{\text{rate}}\;{\text{constant}}\;\left[ {{\text{cm}}^{3} \;{\text{mol}}^{-1} \;{\text{s}}^{-1} } \right]\)

k −B :

\({\text{Species}}\;{\text{B}}\;{\text{desorption}}\;{\text{rate}}\;{\text{constant}}\;\left[ {{\text{s}}^{-1} } \right]\)

k E :

\({\text{Species}}\;{\text{E}}\;{\text{desorption}}\;{\text{rate}}\;{\text{constant}}\;\left[ {{\text{s}}^{-1} } \right]\)

k −E :

\({\text{Species}}\;{\text{E}}\;{\text{desorption}}\;{\text{rate}}\;{\text{constant}}\;\left[ {{\text{cm}}^{3} \;{\text{mol}}^{-1} \;{\text{s}}^{-1} } \right]\)

k G :

\({\text{Gas - side}}\;{\text{mass}}\;{\text{transfer}}\;{\text{coefficient}}\;\left[ {{\text{cm}}^{3} \;{\text{cm}}^{-2} \;{\text{s}}^{-1} } \right]\)

k L :

\({\text{Liquid - side}}\;{\text{mass}}\;{\text{transfer}}\;{\text{coefficient}}\;\left[ {{\text{cm}}^{3} \;{\text{cm}}^{-2} \;{\text{s}}^{-1} } \right]\)

k m :

\({\text{Pseudo}}\;{\text{m - th-order}}\;{\text{rate}}\;{\text{constant}}\; \left[ {{\text{mol}}\;{\text{g}}^{-1} \;{\text{s}}^{-1} } \right]\)

k S :

\({\text{Liquid}}\;{\text{to}}\;{\text{solid}}\;{\text{mass}}\;{\text{transfer}}\;{\text{coefficient}}\;\left[ {{\text{cm}}^{3} \;{\text{cm}}^{-2} \;{\text{s}}^{-1} } \right]\)

\(k_{R}^{DS}\) :

\({\text{Forward}}\;{\text{reaction}}\;{\text{rate}}\;{\text{constant}}\;\left( {{\text{dual-site}}\;{\text{Langmuir}{-}\text{Hinshelwood}}\;{\text{kinetics}}} \right)\;\left[ {{\text{g}}^{3} \;{\text{mol}}^{-1} \;{\text{s}}^{-1} } \right]\):

\(k_{ - R}^{DS}\) :

\({\text{Backward}}\;{\text{reaction}}\;{\text{rate}}\;{\text{constant}}\;\left( {{\text{dual-site}}\;{\text{Langmuir}{-}\text{Hinshelwood}}\;{\text{kinetics}}} \right)\;\left[ {{\text{s}}^{-1} } \right]\)

\(k_{R}^{SS}\) :

\({\text{Forward}}\;{\text{reaction}}\;{\text{rate}}\;{\text{constant}}\;\left( {{\text{single-site}}\;{\text{Langmuir}{-}\text{Hinshelwood}}\;{\text{kinetics}}} \right)\; \left[ {{\text{cm}}^{3} \;{\text{mol}}^{-1} \;{\text{s}}^{-1} } \right]\):

\(k_{ - R}^{SS}\) :

\({\text{Backward}}\;{\text{reaction}}\;{\text{rate}}\;{\text{constant}}\;\left( {{\text{single-site}}\;{\text{Langmuir}{-}\text{Hinshelwood}}\;{\text{kinetics}}} \right)\,\left[ {{\text{s}}^{-1} } \right]\):

k 0 :

\({\text{Zero-order}}\;{\text{rate}}\;{\text{constant}}\;\left[ {{\text{mol}}\;{\text{g}}^{-1} \;{\text{s}}^{-1} } \right]\)

\(k_{LH}^{DS}\) :

\({\text{Rate}}\;{\text{constant}}\;\left( {{\text{dual-site}}\;{\text{Langmuir}{-}\text{Hinshelwood}}\;{\text{kinetics}}} \right)\;\left[ {{\text{cm}}^{3} \;{\text{g}}^{-1} \;{\text{s}}^{-1} } \right]\)

\(k_{LH}^{SS}\) :

\({\text{Rate}}\;{\text{constant}}\;\left( {{\text{single-site}}\;{\text{Langmuir}{-}\text{Hinshelwood}}\;{\text{kinetics}}} \right)\;\left[ {{\text{cm}}^{3} \;{\text{g}}^{-1} \;{\text{s}}^{-1} \;({\text{Eq}} .\;{\text{S}}14),\quad {\text{s}}^{-1} \;({\text{Eq}} .\;65)} \right]\)

K A :

\({\text{Adsorption}}\;{\text{equilibrium}}\;{\text{constant}}\;{\text{of}}\;{\text{species}}\;{\text{A}}\;\left[ {{\text{cm}}^{3} \;{\text{mol}}^{-1} } \right]\)

K B :

\({\text{Adsorption}}\;{\text{equilibrium}}\;{\text{constant}}\;{\text{of}}\;{\text{species}}\;{\text{B}}\;\left[ {{\text{cm}}^{3} \;{\text{mol}}^{-1} } \right]\)

K E :

\({\text{Adsorption}}\;{\text{equilibrium}}\;{\text{constant}}\;{\text{of}}\;{\text{species}}\;{\text{E}}\;\left[ {{\text{cm}}^{3} \;{\text{mol}}^{-1} } \right]\)

\(K^{\prime}_{E}\) :

\({\text{Desorption}}\;{\text{equilibrium}}\;{\text{constant}}\;{\text{of}}\;{\text{species}}\;{\text{E}}\;\left[ {{\text{mol}}\;{\text{cm}}^{-3} } \right]\)

K L :

\({\text{Overall}}\;{\text{gas}}\;{\text{to}}\;{\text{liquid}}\;{\text{mass}}\;{\text{transfer}}\;{\text{coefficient}}\;\left[ {{\text{cm}}^{3} \;{\text{cm}}^{-2} \;{\text{s}}^{-1} } \right]\)

\(K_{R}^{DS}\) :

\({\text{Reaction}}\;{\text{equilibrium}}\;{\text{constant}}\;\left( {{\text{dual-site}}\;{\text{Langmuir}{-}\text{Hinshelwood}}\;{\text{kinetics}}} \right)\;\left[ {{\text{g}}\;{\text{mol}}^{-1} } \right]\)

\(K_{R}^{SS}\) :

\({\text{Reaction}}\;{\text{equilibrium}}\;{\text{constant}}\;\left( {{\text{single-site}}\;{\text{Langmuir}{-}\text{Hinshelwood}}\;{\text{kinetics}}} \right)\;\left[ {{\text{cm}}^{3} \;{\text{mol}}^{-1} } \right]\)

L :

\({\text{Thichness}}\;{\text{of}}\;{\text{a}}\;{\text{catalyst}}\;{\text{slab}}\;\left[ {\text{cm}} \right]\)

m :

\({\text{Order}}\;{\text{of}}\;{\text{reaction}}\;{\text{with}}\;{\text{respect}}\;{\text{to}}\;{\text{species}}\;{\text{A}}\;\left[ {\text{dimensionless}} \right]\):

M A :

\({\text{Overall}}\;{\text{gas}}\;{\text{to}}\;{\text{solid}}\;{\text{mass}}\;{\text{transfer}}\;{\text{coefficient}}\;{\text{for}}\;{\text{species}}\,{\text{A}}\;\left[ {{\text{s}}^{-1} } \right]\)

P :

\({\text{Total}}\;{\text{pressure}}\;\left[ {\text{atm}} \right]\)

r :

\({\text{Radial}}\;{\text{distance}}\;{\text{in}}\;{\text{the}}\;{\text{catalyst}}\;{\text{particle}}\;{\text{measured}}\;{\text{from}}\;{\text{its}}\;{\text{center}}\;\left[ {\text{cm}} \right]\)

r A :

\({\text{Rate}}\;{\text{of}}\;{\text{reaction}}\;{\text{per}}\;{\text{unit}}\;{\text{volume}}\;{\text{of}}\;{\text{catalyst}}\;\left[ {{\text{mol}}\;{\text{cm}}^{-3} \;{\text{s}}^{-1} } \right]\)

r Maximum :

\({\text{Maximum}}\;{\text{rate}}\;{\text{of}}\;{\text{reaction}}\;{\text{in}}\;{\text{the}}\;{\text{catalyst}}\;{\text{particle}}\;{\text{based}}\;{\text{on}}\;C_{A}^{S} \;\left[ {{\text{mol}}\;{\text{cm}}^{-3} \;{\text{s}}^{-1} } \right]\)

R :

\({\text{Radius}}\;{\text{of}}\;{\text{the}}\;{\text{catalyst}}\;{\text{particle}}\;\left[ {\text{cm}} \right]\)

R A :

\({\text{Rate}}\;{\text{of}}\;{\text{reaction}}\;{\text{of}}\;{\text{A}}\;{\text{per}}\;{\text{unit}}\;{\text{volume}}\;{\text{of}}\;{\text{reactor}}\;\left[ {{\text{mol}}\;{\text{cm}}^{-3} \;{\text{s}}^{-1} } \right]\)

S :

\({\text{An}}\;{\text{active}}\;{\text{site}}\;\left[ {\text{dimensionless}} \right]\)

S P :

\({\text{Catalyst}}\;{\text{particle}}\;{\text{geometric}}\;{\text{area}}\;\left[ {{\text{cm}}^{2} } \right]\)

t :

\({\text{Time}}\; \left[ {\text{s}} \right]\)

T :

\({\text{Temperature }}\;\left[ {\text{K}} \right]\)

ν :

\({\text{Reaction}}\;{\text{rate}}\;\left[ {{\text{mol}}\;{\text{cm}}^{-3} \;{\text{s}}^{-1} } \right]\)

V P :

\({\text{Catalyst}}\;{\text{particle}}\;{\text{volume}}\;\left[ {{\text{cm}}^{3} } \right]\)

w :

\({\text{Catalyst}}\;{\text{mass}}\;{\text{per}}\;{\text{unit}}\;{\text{volume}}\;{\text{of}}\;{\text{reactor}}\;\left[ {{\text{g}}\;{\text{cm}}^{-3} } \right]\)

Y:

\({\text{Preexponential}}\;{\text{factor}}\;\left( {{\text{Eq}}.\;62} \right)\;\left[ {{\text{s}}^{-1} } \right]\)

z :

\({\text{Coordinate}}\;{\text{oriented}}\;{\text{from}}\;{\text{the}}\;{\text{center}}\;{\text{line}}\;{\text{to}}\;{\text{the}}\;{\text{surface}}\;{\text{in}}\;{\text{a}}\;{\text{catalyst}}\;{\text{slab}}\;\left[ {\text{cm}} \right]\)

Z :

\({\text{Catalyst}}\;{\text{loading}}\;\left[ {{\text{g}}\;{\text{cm}}^{-3} } \right]\)

\(\eta\) :

\({\text{Overall}}\;{\text{effectiveness}}\;{\text{factor}}\;\left[ {\text{dimensionless}} \right]\)

\(\eta_{c}\) :

\({\text{Catalytic}}\;{\text{effectiveness}}\;{\text{factor}}\;\left[ {\text{dimensionless}} \right]\)

\(\eta_{C\infty }\) :

\({\text{Asymptotic}}\;{\text{catalytic}}\;{\text{effectiveness}}\;{\text{factor}}\;{\text{defined}}\;{\text{by}}\;{\text{Eq}} .\;{\text{S}}40\;\left[ {\text{dimensionless}} \right]\)

λ :

\({\text{Distance}}\;{\text{from}}\;{\text{the}}\;{\text{center}}\;{\text{of}}\;{\text{the}}\;{\text{catalyst}}\;{\text{at}}\;{\text{which}}\;C_{A} \;{\text{becomes}}\;{\text{zero}}\;\left[ {\text{cm}} \right]\)

ρ P :

\({\text{Density}}\;{\text{of}}\;{\text{the}}\;{\text{catalyst}}\;{\text{particle}}\;\left[ {{\text{g}}\;{\text{cm}}^{-3} } \right]\)

σ A :

\({\text{Parameter}}\;{\text{defined}}\;{\text{by}}\;{\text{Eq}} .\; 1 6\;\left[ {\text{dimensionless}} \right]\)

\(\upsilon_{A}\) :

\({\text{Stoichometric}}\;{\text{coefficient}}\;{\text{of}}\;A\;{\text{in}}\;{\text{the}}\;{\text{reaction}}\;{\text{presented}}\;{\text{in}}\;{\text{Eq}} .\;1\;\left[ {\text{dimensionless}} \right]\)

\(\upsilon_{B}\) :

\({\text{Stoichometric}}\;{\text{coefficient}}\;{\text{of}}\;{\text{B}}\;{\text{in}}\;{\text{the}}\;{\text{reaction}}\;{\text{presented}}\;{\text{in}}\;{\text{Eq}} .\;1\;\left[ {\text{dimensionless}} \right]\)

\(\upsilon_{E}\) :

\({\text{Stoichometric}}\;{\text{coefficient}}\;{\text{of}}\;{\text{E}}\;{\text{in}}\;{\text{the}}\;{\text{reaction}}\;{\text{presented}}\;{\text{in}}\;{\text{Eq}} .\;1\;\left[ {\text{dimensionless}} \right]\)

\(\phi\) :

\({\text{Generalised}}\;{\text{Thiele}}\;{\text{modulus}}\;\left[ {\text{dimensionless}} \right]\)

\(\phi_{0}\) :

\({\text{Thiele}}\;{\text{modulus}}\;\left[ {\text{dimensionless}} \right]\)

\({{\varOmega }}_{A}\) :

\({\text{Local}}\;{\text{rate}}\;{\text{of}}\;{\text{chemical}}\;{\text{reaction}}\;{\text{of}}\;{\text{A}}\;{\text{per}}\;{\text{unit}}\;{\text{weight}}\;{\text{of}}\;{\text{catalyst}}\;\left[ {{\text{mol}}\;{\text{g}}^{-1} \;{\text{s}}^{-1} } \right]\)

\({{\varOmega }}_{A}^{DSLH}\) :

\({\text{Local}}\;{\text{rate}}\;{\text{of}}\;{\text{chemical}}\;{\text{reaction}}\;{\text{of}}\;{\text{A}}\;\left( {{\text{dual-site}}\;{\text{Langmuir}{-}\text{Hinshelwood}}\;{\text{kinetics}}} \right)\;\left[ {{\text{mol}}\;{\text{g}}^{-1} \;{\text{s}}^{-1} } \right]\)

\({{\varOmega }}_{A}^{PL}\) :

\({\text{Local}}\;{\text{rate}}\;{\text{of}}\;{\text{chemical}}\;{\text{reaction}}\;{\text{of}}\;{\text{A}}\;\left( {{\text{power}}\;{\text{law}}\;{\text{kinetics}}} \right)\;\left[ {{\text{mol}}\;{\text{g}}^{-1} \;{\text{s}}^{-1} } \right]\)

\({{\varOmega }}_{A}^{SSLH}\) :

\({\text{Local}}\;{\text{rate}}\;{\text{of}}\;{\text{chemical}}\;{\text{reaction}}\;{\text{of}}\;{\text{A}}\;\left( {{\text{single-site}}\;{\text{Langmuir - Hinshelwood}}\;{\text{kinetics}}} \right)\;\left[ {{\text{mol}}\;{\text{g}}^{-1} \;{\text{s}}^{-1} } \right]\)

\({{\varOmega }}_{AA}^{SSLH}\) :

\({\text{Rate}}\;{\text{of}}\;{\text{adsorption}}\;{\text{of}}\;{\text{A}}\;\left( {{\text{single-site}}\;{\text{Langmuir}{-}\text{Hinshelwood}}\;{\text{kinetics}}} \right)\;\left[ {{\text{mol}}\;{\text{g}}^{-1} \;{\text{s}}^{-1} } \right]\)

\({{\varOmega }}_{A}^{ZO}\) :

\({\text{Local}}\;{\text{rate}}\;{\text{of}}\;{\text{chemical}}\;{\text{reaction}}\;{\text{of}}\;{\text{A}}\;\left( {{\text{zero-order}}\;{\text{kinetics}}} \right)\;\left[ {{\text{mol}}\;{\text{g}}^{-1} \;{\text{s}}^{-1} } \right]\)

\({{\varOmega }}_{DE}^{SSLH}\) :

\({\text{Rate}}\;{\text{of}}\;{\text{desorption}}\;{\text{of}}\;{\text{E}}\;\left( {{\text{single-site }}\;{\text{Langmuir}{-}\text{Hinshelwood}}\;{\text{kinetics}}} \right)\;\left[ {{\text{mol}}\;{\text{g}}^{-1} \;{\text{s}}^{-1} } \right]\)

References

  1. Biardi G, Baldi G (1999) Three-phase catalytic reactors. Catal Today 52(2–3):223–234

    Article  CAS  Google Scholar 

  2. Chaudhari RV, Ramachandran PA (1980) Three phase slurry reactors. AIChE J 26(2):177–201

    Article  CAS  Google Scholar 

  3. Nijhuis TA, Kreutzer MT, Romijn ACJ, Kapteijn F, Moulijn JA (2001) Monolithic catalysts as efficient three-phase reactors. Chem Eng Sci 56(3):823–829

    Article  CAS  Google Scholar 

  4. Hoek I, Nijhuis TA, Stankiewicz AI, Moulijn JA (2004) Performance of the monolithic stirrer reactor: applicability in multi-phase processes. Chem Eng Sci 59(22–23):4975–4981

    Article  CAS  Google Scholar 

  5. Nijhuis TA, Kreutzer MT, Romijn ACJ, Kapteijn F, Moulijn JA (2001) Monolithic catalysts as more efficient three-phase reactors. Catal Today 66(2–4):157–165

    Article  CAS  Google Scholar 

  6. Mitrovic M, Pitault I, Forissier M, Simoens S, Ronze D (2005) Liquid–solid mass transfer in a three-phase stationary catalytic basket reactor. AIChE J 51(6):1747–1757

    Article  CAS  Google Scholar 

  7. Carberry JJ (1964) Designing laboratory catalytic reactors. Ind Eng Chem 56(11):39–46

    Article  CAS  Google Scholar 

  8. Ramachandran PA, Chaudhari RV (1980) Overall effectiveness factor of a slurry reactor for non-linear kinetics. Can J Chem Eng 58:412

    Article  CAS  Google Scholar 

  9. Boldrini DE, Tonetto GM, Damiani DE (2014) Overall effectiveness factor for slab geometry in a three-phase reaction system. Int J Chem Reactor Eng 12(1):A26

    Article  Google Scholar 

  10. Ramachandran PA, Chaudhari RV (1983) Three-phase catalytic reactors, vol 2. Gordon & Breach Science Pub, London

    Google Scholar 

  11. Aris R (1975) The mathematical theory of diffusion and reaction in permeable catalysts: the theory of the steady state, vol 1. Clarendon Press, Oxford

    Google Scholar 

  12. Satterfield CN (1970) Mass transfer in heterogeneous catalysis. The MIT Press, Cambridge

    Google Scholar 

  13. Bischoff KB (1965) Effectiveness factors for general reaction rate forms. AIChE J 11(2):351–355

    Article  CAS  Google Scholar 

  14. Sylvester ND, Kulkarni AA, Carberry JJ (1975) Slurry and trickle-bed reactor effectiveness. Canad J Chem Eng 53(3):313–316

    Article  CAS  Google Scholar 

  15. Ramachandran PA, Chaudhari RV (1979) Theoretical analysis of reaction of two gases in a catalytic slurry reactor. Ind Eng Chem Process Des Dev 18(4):703–708

    Article  CAS  Google Scholar 

  16. Brahme, P. H. (1972). Studies in a slurry reactor: hydrogenation of glucose on raney nickel.

  17. Ido T, Shindo S, Teshima H (1976) Oxidation of carbon-monoxide on a cobalt-oxide catalyst suspended in an inert liquid. Int Chem Eng 16(4):695–701

    Google Scholar 

  18. Satterfield CN, Ma YH, Sherwood TK (1968) The Effectiveness Factor in a Liquid‐Filled Porous Catalyst. In: Proceedings of the Inst. Chem. Eng. Symp. Ser (Vol. 28, p. 22)

  19. Kenney CN, Sedriks W (1972) Effectiveness factors in a three-phase slurry reactor: the reduction of crotonaldehyde over a palladium catalyst. Chem Eng Sci 27(11):2029–2040

    Article  CAS  Google Scholar 

  20. Ruether JA, Puri PS (1973) Mass transfer effects in hydrogenations in slurry reactors. Canad J Chem Eng 51(3):345–352

    Article  CAS  Google Scholar 

  21. Lemcoff NO (1977) Liquid phase catalytic hydrogenation of acetone. J Catal 46(3):356–364

    Article  CAS  Google Scholar 

  22. Acres GJK, Cooper BJ (1972) Carbon-supported platinum metal catalysts for hydrogenation reactions. Mass transport effects in liquid phase hydrogenation over Pd/C. J Appl Chem Biotechnol 22(6):769–785

    Article  CAS  Google Scholar 

  23. Meyer C, Clement G, Balaceanu JC (1965) Initiation of a free radical chain reaction by heterogeneous catalysis. In Proceedings of the Third International Congress on Catalysis (pp 184–197). North-Holland Publishing Company New York

  24. Caloyannis AG, Graydon WF (1971) Heterogeneous catalysis in the oxidation of p-xylene in the liquid phase. J Catal 22(3):287–296

    Article  CAS  Google Scholar 

  25. Chaudhari RV, Ramachandran PA (1980) Influence of mass transfer on zero-order reaction in a catalytic slurry reactor. Ind Eng Chem Fundam 19(2):201–206

    Article  CAS  Google Scholar 

  26. Wheeler A (1951) Reaction rates and selectivity in catalyst pores. Adv Catal 3(5):433–439

    Google Scholar 

  27. Petersen EE (1965) Chemical reaction analysis. Prentice-Hall, Hoboken

    Google Scholar 

  28. Brahme PH, Doraiswamy LK (1976) Modelling of a slurry reaction. Hydrogenation of glucose on Raney nickel. Ind Eng Chem Process Des Dev 15(1):130–137

    Article  CAS  Google Scholar 

  29. Froment GF, Bischoff KB, De Wilde J (1990) Chemical reactor analysis and design, vol 2. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

The author thanks Prof. Dr. Santiago Capriotti for his advice and helpful discussions. This research was supported by the National Scientific and Technical Research Council (CONICET) and Universidad Nacional del Sur (UNS), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego E. Boldrini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1096 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boldrini, D.E. Three-phase mass transfer: theoretical development of the overall effectiveness factor for cylindrical geometries. Reac Kinet Mech Cat 133, 17–41 (2021). https://doi.org/10.1007/s11144-021-01981-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01981-2

Keywords

Navigation