Skip to main content
Log in

Poisoning effect of calcium hydroxide on Fe–Ce/TiO2 catalyst for NO removal: evolution of active species and surface properties

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Many SCR catalysts without V species are developed and used for the NO abatement. The content of Ca in the real flue gas will result in the deactivation of catalysts. In this work, the effect of Ca(OH)2 on the denitration performance of the Fe–Ce/TiO2 catalyst for SCR reaction was explored. The BET, XRD, XPS, NH3-TPD, Py-IR, UV–Vis DRS, H2-TPR, and SEM–EDS mapping techniques were used to characterize the evolution of active species and the surface properties over the studied catalysts. The gained results demonstrate that the Ca(OH)2 results in serious deactivation of Fe–Ce/TiO2 catalyst for NH3-SCR reaction and the degree of deactivation is closely related to the loading of Ca(OH)2. Such serious deactivation caused by Ca(OH)2 is attributed to the smaller surface area, the declined redox ability and surface acidity, the lower content of Ce3+ and Fe3+, as well as the less surface adsorbed oxygen species. Moreover, the addition of Ca(OH)2 leads to poor dispersion of Ce and Fe species over the catalyst surface, which may also be responsible for the fall of the catalytic performance of the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Song I, Lee H, Jeon SW, Kim DH (2020) J Catal 382:269–279

    Article  CAS  Google Scholar 

  2. Zeng Y, Song W, Wang Y, Zhang S, Wang T, Zhong Q (2020) J Hazard Mater 383:121212

    Article  CAS  Google Scholar 

  3. Zhang X, Wang J, Song Z, Zhao H, Xing Y, Zhao M, Zhao J, Ma Z, Zhang P, Tsubaki N (2019) Mol Catal 463:1–7

    Article  CAS  Google Scholar 

  4. Zhong L, Fang Q, Li X, Li Q, Zhang C, Chen G (2019) Appl Catal A 579:151–158

    Article  CAS  Google Scholar 

  5. Kim GJ, Lee SH, Nam KB, Hong SC (2020) Appl Surf Sci 507:145064

    Article  Google Scholar 

  6. Liu L, Xu K, Su S, He L, Qing M, Chi H, Liu T, Hu S, Wang Y, Xiang J (2020) Appl Catal A 592:117413

    Article  Google Scholar 

  7. Liu X, Yu Q, Chen H, Jiang P, Li J, Shen Z (2020) Appl Surf Sci 508:144694

    Article  CAS  Google Scholar 

  8. Wang Z, Lan J, Haneda M, Liu Z (2020). Catal Today. https://doi.org/10.1016/j.cattod.2020.05.040

    Article  Google Scholar 

  9. Smirniotis PG, Peña DA, Uphade BS (2001) Angew Chem Int Ed 40:2479–2481

    Article  CAS  Google Scholar 

  10. Boningari T, Ettireddy PR, Somogyvari A, Liu Y, Vorontsov A, McDonald CA, Smirniotis PG (2015) J Catal 325:145–155

    Article  CAS  Google Scholar 

  11. Boningari T, Pappas DK, Smirniotis PG (2018) J Catal 365:320–333

    Article  CAS  Google Scholar 

  12. Wang X, Fang Q, He X, Wang J, Gui K, Thomas HR (2021) Reac Kinet Mech Cat 132:331–345

    Article  CAS  Google Scholar 

  13. Xue H, Guo X, Wang S, Sun C, Yu J, Mao D (2018) Catal Commun 112:53–57

    Article  CAS  Google Scholar 

  14. Wei L, Cui S, Guo H, Zhang L (2018) Comput Mater Sci 144:216–222

    Article  CAS  Google Scholar 

  15. Gao Q, Ye Q, Han S, Dai H (2020) ChemistrySelect 5:13477–13486

    Article  CAS  Google Scholar 

  16. Wang X, Zhou J, Wang J, Ding A, Gui K, Thomas HR (2019) Reac Kinet Mech Cat 129:153–164

    Article  Google Scholar 

  17. Jiang Y, Shi W, Lai C, Gao W, Yang L, Yu X, Yang Z, Lin R (2020). J Energy Inst. https://doi.org/10.1016/j.joei.2019.12.003

    Article  Google Scholar 

  18. Klimczak M, Kern P, Heinzelmann T, Lucas M, Claus P (2010) Appl Catal B 95:39–47

    Article  CAS  Google Scholar 

  19. Liu L, Wu X, Ma Y, Zhang X, Ran R, Si Z, Weng D (2020) Chem Eng J 383:123080

    Article  CAS  Google Scholar 

  20. Kong M, Liu Q, Zhou J, Jiang L, Tian Y, Yang J, Ren S, Li J (2018) Chem Eng J 348:637–643

    Article  CAS  Google Scholar 

  21. Wang X, Fang Q, Wang J, Gui K, Thomas HR (2020) RSC Adv 10:44876–44883

    Article  CAS  Google Scholar 

  22. Ma S, Tan H, Li Y, Wang P, Zhao C, Niu X, Zhu Y (2020) Chemosphere 243:125309

    Article  CAS  Google Scholar 

  23. Zhang Q, Zhang Y, Zhang T, Wang H, Ma Y, Wang J, Ning P (2020) Appl Surf Sci 503:144190

    Article  CAS  Google Scholar 

  24. Jiang SY, Zhou RX (2015) Fuel Process Technol 133:220–226

    Article  CAS  Google Scholar 

  25. Xu H, Li Y, Xu B, Cao Y, Feng X, Sun M, Gong M, Chen Y (2016) J Ind Eng Chem 36:334–345

    Article  CAS  Google Scholar 

  26. Yao X, Kang K, Cao J, Chen L, Luo W, Zhao W, Rong J, Chen Y (2020) Appl Catal B 269:118808

    Article  CAS  Google Scholar 

  27. Song Z, Xing Y, Zhang X, Zhao H, Zhao M, Zhao J, Ma Z, Zhang Q (2019) Appl Organomet Chem 33:e5160

    Google Scholar 

  28. Liu C, Chen L, Chang H, Ma L, Peng Y, Arandiyan H, Li J (2013) Catal Commun 40:145–148

    Article  Google Scholar 

  29. Gong P, Xie J, Fang D, He F, Li F, Qi K (2020) Appl Surf Sci 505:144641

    Article  CAS  Google Scholar 

  30. Zhu N, Shan W, Lian Z, Zhang Y, Liu K, He H (2020) J Hazard Mater 382:120970

    Article  CAS  Google Scholar 

  31. Sun L, Cao S, Huang Y, Zhang Y, Xiao Y, Dong G, Su Y (2019) RSC Adv 9:30340–30349

    Article  CAS  Google Scholar 

  32. Liu Z, Han J, Zhao L, Wu Y, Wang H, Pei X, Xu M, Lu Q, Yang Y (2019) Appl Catal A 587:117263

    Article  CAS  Google Scholar 

  33. Zhao Q, Chen B, Li J, Wang X, Crocker M, Shi C (2020) Appl Catal B 277:119215

    Article  CAS  Google Scholar 

  34. Lu Q, Ali Z, Tang H, Iqbal T, Arain Z, Cui M, Liu D, Li W, Yang Y (2019) Korean J Chem Eng 36:377–384

    Article  CAS  Google Scholar 

  35. Kambolis A, Matralis H, Trovarelli A, Papadopoulou C (2010) Appl Catal A 377:16–26

    Article  CAS  Google Scholar 

  36. Ferreira VJ, Tavares P, Figueiredo JL, Faria JL (2012) Ind Eng Chem Res 51:10535–10541

    Article  CAS  Google Scholar 

  37. Schwidder M, Kumar M, Klementiev K, Pohl M, Bruckner A, Grunert W (2005) J Catal 231:314–330

    Article  CAS  Google Scholar 

  38. Stahl A, Wang Z, Schwämmle T, Ke J, Li X (2017) Catalysts 7:71

    Article  Google Scholar 

  39. Qu Z, Miao L, Wang H, Fu Q (2015) Chem Commun 51:956–958

    Article  CAS  Google Scholar 

  40. Acerbi N, Golunski S, Tsang SC, Daly H, Hardacre C, Smith R, Collier P (2012) J Phys Chem C 116:13569–13583

    Article  CAS  Google Scholar 

  41. Yang S, Guo Y, Chang H, Ma L, Peng Y, Qu Z, Yan N, Wang C, Li J (2013) Appl Catal B 136–137:19–28

    Article  Google Scholar 

  42. Xu X, Jiang E, Wang M, Li B, Zhou L (2012) Renew Energy 41:23–28

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (17KJB610005), the Jiangsu Government Scholarship for Overseas Studies (JS-2018), and the project funded by Nanjing Xiaozhuang University (2019NXY46).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Fang, Q., Wang, J. et al. Poisoning effect of calcium hydroxide on Fe–Ce/TiO2 catalyst for NO removal: evolution of active species and surface properties. Reac Kinet Mech Cat 133, 245–258 (2021). https://doi.org/10.1007/s11144-021-01980-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01980-3

Keywords

Navigation