Skip to main content
Log in

Investigation of the ozone-induced oxidation of soot over LaMnO3 catalyst using O3/O2 temperature-programmed desorption experiments

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, we investigated how the catalytic redox cycle occurs over a lanthanum manganese oxide (LaMnO3) catalyst when applied to the ozone-induced oxidation of soot. This was accomplished by tracking the catalysis using O3/O2 temperature-programmed desorption coupled with X-ray photoelectron spectroscopy (XPS). We prepared the catalyst by the citric acid sol–gel method to obtain a catalyst with a uniform perovskite phase and improved specific surface area. The catalyst was remarkably active in promoting ozone-induced soot oxidation within the temperature range of 25–125 °C. The active oxygen species were superoxide ions combined with Mn4+ ions on the catalyst surface. It was presumed the superoxide ion migrates over the surface Mn4+ sites and either desorbs as molecular oxygen or oxidizes the soot particles if it reaches the interface between soot and catalyst particles. The redox cycle was completed by the Mn4+-to-Mn3+ transition, which accompanied the detachment of superoxide ions. No evidence was found to support the involvement of the bulk phase of the catalyst with the redox cycle. The ozone-induced redox cycle was presumed to exclusively occur on the surface of the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ekki S, (1997) On the possible role of aircraft-generated soot in the middle latitude ozone depletion. J Geophys Res 102:10751–10758

    Article  Google Scholar 

  2. Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, Flanner MG, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn PK, Sarofim MC, Schultz MG, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda SK, Hopke PK, Jacobson MZ, Kaiser JW, Klimont Z, Lohmann U, Schwarz JP, Shindell D, Storelvmo T, Warren SG, Zender CS (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118(11):5380–5552

    Article  CAS  Google Scholar 

  3. Forbes (2020) Fossil Fuels Still Supply 84 Percent of World Energy—and Other Eye Openers BP’s Annual Review. https://www.forbes.com/sites/rrapier/2020/06/20/bp-review-new-highs-in-global-energy-consumption-and-carbon-emissions-in-2019. Accessed 30 Dec 2020

  4. Zammit M, Dimaggio C, Kim C, Lambert C, Muntean G, Peden C, Parks J, Howden K (2012) Future automotive aftertreatment solutions: the 150°C Challenge Workshop Report. USDRIVE Workshop. https://www.pnnl.gov/main/publications/external/technical_Reports/PNNL-22815.pdf

  5. Lee JS, Park TU, Lee KY, Lee DW (2021) Enhancement of combustive removal of soot at low temperatures (~ 150°C) using ozone as an oxidant and potassium-substituted lanthanum manganite as a catalyst. Ozone Sci Eng On-line published

  6. Mishra A, Prasad R (2014) Preparation and application of perovskite catalysts for diesel soot emissions control: an overview. Catal Rev Sci Eng 56:57–81

    Article  CAS  Google Scholar 

  7. Teraoka Y, Kanada K, Kagawa S (2001) Synthesis of La–K–Mn–O perovskite-type oxides and their catalytic property for simultaneous removal of NOx and diesel soot particulates. Appl Catal B Environ 34:73–78

    Article  CAS  Google Scholar 

  8. Peron G, Gilsenti A (2019) Perovskites as alternatives to noble metals in automotive exhaust abatement: activation of oxygen on LaCrO3 and LaMnO3. Topics Catal 62:244–251

    Article  CAS  Google Scholar 

  9. Rodríguez-Carvajal J, Hennion M, Pinsard L, Revcolevschi A (1997) The Jahn-Teller structural transition in stoichiometric LaMnO3. Physica B 234–236:848–850

    Article  Google Scholar 

  10. Töpfer J, Goodenough B (1997) LaMnO3+d revisited. J Solid State Chem 130:117–128

    Article  Google Scholar 

  11. Tola PS, Kim DH, Liu C, Phan TL, Lee BW (2016) Ferromagnetism in LaMnO3 nanoparticles prepared by sol–gel method combined with polyvinyl alcohol. J Electron Mater 45(7):3501–3508

    Article  CAS  Google Scholar 

  12. Zuev AY, Tsvetkov DS (2010) Oxygen nonstoichiometry, defect structure and defect-induced expansion of undoped perovskite LaMnO3±δ. Solid State Ion 181:557–563

    Article  CAS  Google Scholar 

  13. Cortés-Gil R, Arroyo A, Ruiz-González L, Alonso JM, Hernando A, González-Calbet JM, Vallet-Regí M (2006) Evolution of magnetic behaviour in oxygen deficient LaMnO3−δ. J Phys Chem Solids 67(1–3):579–582

    Article  Google Scholar 

  14. Wang X, Zhang Y, Li Q, Wang Z, Zhang Z (2012) identification of active oxygen species for soot combustion on LaMnO3 perovskite. Catal Sci Technol 2:1822–1824

    Article  CAS  Google Scholar 

  15. Najjar H, Lamonier JF, Mentré O, Giraudon JM, Batis H (2011) Optimization of the combustion synthesis towards efficient LaMnO3+y catalysts in methane oxidation. Appl Catal B Environ 106:149–159

    CAS  Google Scholar 

  16. Hammami R, Aissa SB, Batis H (2009) Effects of thermal treatment on physicochemical and catalytic properties of lanthanum manganite LaMnO3+y. Appl Catal A Gen 353:145–153

    Article  CAS  Google Scholar 

  17. Esmaeilnejad-Ahranjani P, Khodadadi A, Ziaei-Azad H, Mortazavi Y (2011) Effects of excess manganese in lanthanum manganite perovskite on lowering oxidation light-off temperature for automotive exhaust gas pollutants. Chem Eng J 169:282–289

    Article  CAS  Google Scholar 

  18. Islam MS (2000) Ionic transport in ABO3 perovskite oxides: a computer modelling tour. J Mater Chem 10:1027–1038

    Article  CAS  Google Scholar 

  19. Chroneos A, Vovk RV, Goulatis IL, Goulatis LI (2010) Oxygen transport in perovskite and related oxides: a brief review. J Alloys Compd 494:190–195

    Article  CAS  Google Scholar 

  20. Zhou W, Sunarso J, Zhao M, Liang F, Klande T, Feldhoff A (2013) A highly active perovskite electrode for the oxygen reduction reaction below 600 °C. Angew Chem Int Ed 52:14036–14040

    Article  CAS  Google Scholar 

  21. Mayeshiba TT, Morgan DD (2016) Factors controlling oxygen migration barriers in perovskites. Solid State Ion 296:71–77

    Article  CAS  Google Scholar 

  22. Kotomina EA, Mastrikov YA, Heifets E, Merkle R, Fleig J, Maier J, Gordon A, Felsteiner J (2008) First-principles modeling of LaMnO3 SOFC cathode material. ECS Trans 13(26):301–306

    Article  Google Scholar 

  23. Suntivich J, Gasteiger A, Yabuuchi N, Nakanishi H, Goodenough B, Shao-Horn Y (2011) Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat Chem 3:546–550

    Article  CAS  Google Scholar 

  24. Ivanov DV, Sadovskaya EM, Pinaeva LG, Isupova LA (2009) Influence of oxygen mobility on activity of La-Sr-Mn-O composites in the reaction of high temperature N2O decomposition. J Catal 267(1):5–13

    Article  CAS  Google Scholar 

  25. Zhang R, Luo N, Chen B, Kaliaguine S (2010) Soot combustion over lanthanum cobaltites and related oxides for diesel exhaust treatment. Energy Fuels 24(7):3719–3726

    Article  CAS  Google Scholar 

  26. Pecchi G, Dinamarca R, Campos CM, Garcia X, Jimenez R, Fierro JLG (2014) Soot oxidation on silver-substituted LaMn0.9Co0.1O3 perovskites. Ind Eng Chem Res 53(24):10090–10096

    Article  CAS  Google Scholar 

  27. Sihaib Z, Puleo F, Pantaleo G, Parola VL, Valverde JL, Gil S, Liotta LF, Giroir-Fendler A (2019) The effect of citric acid concentration on the properties of LaMnO3 as a catalyst for hydrocarbon oxidation. Catalysts 9(3):226–244

    Article  Google Scholar 

  28. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069

    Article  CAS  Google Scholar 

  29. Wu JH, Liang H (2010) Soot Oxidation via CuO doped CeO2 catalysts prepared using coprecipitation and citrate acid complex combustion synthesis. Catal Today 153:125–132

    Article  Google Scholar 

  30. Pecchi G, Dinamarca R, Campos CM, Garcia X, Jimenez R, Fierro JLG (2014) Soot oxidation on silver-substituted LaMn0.9Co0.1O3 perovskites. Ind Eng Chem Res 53:10090–10096

    Article  CAS  Google Scholar 

  31. Pöschl U, Letzel T, Schauer C, Niessner R (2001) Interaction of ozone and water vapor with spark discharge soot aerosol particles coated with benzo[a]pyrene: O3 and H2O adsorption, benzo[a]pyrene degradation, and atmospheric implications. J Phys Chem A 105:4029–4041

    Article  Google Scholar 

  32. McCabe J, Abbatt JPD (2009) Heterogeneous loss of gas-phase ozone on n-hexane soot surfaces: similar kinetics to loss on other chemically unsaturated solid surfaces. J Phys Chem C 113:2120–2127

    Article  CAS  Google Scholar 

  33. Liu Y, Liu C, Ma J, Ma Q, He H (2010) Structural and hygroscopic changes of soot during heterogeneous reaction with O3. Phys Chem Chem Phys 12:10896–10903

    Article  CAS  Google Scholar 

  34. Antiñolo M, Willis MD, Zhou S, Abbatt JPD (2015) Connecting the oxidation of soot to its redox cycling abilities. Nat Commun 6(6812):1–7

    Google Scholar 

  35. Itoh Y, Sakakibara Y, Shinjoh H (2014) Low-temperature oxidation of particulate matter using ozone. RSC Adv 37:19144–19149

    Article  Google Scholar 

  36. Li W, Gibbs GV, Oyama ST (1998) Mechanism of ozone decomposition on a manganese oxide catalyst. 1. In situ raman spectroscopy and ab initio molecular orbital calculations. J Am Chem Soc 120:9041–9046

    Article  CAS  Google Scholar 

  37. Fino D, Russo N, Saracco G, Specchia V (2003) The role of suprafacial oxygen in some perovskites for the catalytic combustion of soot. J Catal 217:367–375

    Article  CAS  Google Scholar 

  38. Royer S, Bérubé F, Kaliaguine S (2005) Effect of the synthesis conditions on the redox and catalytic properties in oxidation reactions of LaCo1-xFexO3. Appl Catal A Gen 282:273–284

    Article  CAS  Google Scholar 

  39. Hou YC, Ding MW, Liu SK, Wu SK, Lin YC (2014) Ni-substituted LaMnO3 perovskites for ethanol oxidation. RSC Adv 4:5329–5338

    Article  CAS  Google Scholar 

  40. Lee DW, Sung JY, Park JH, Hong YK, Lee SH, Oh SH, Lee KY (2010) The enhancement of low-temperature combustion of diesel PM through concerted application of FBC and perovskite. Catal Today 157(1–4):432–435

    Article  CAS  Google Scholar 

  41. Miniajluk N, Trawczyński J, Zawadzki M (2017) Properties and catalytic performance for propane combustion of LaMnO3 prepared under microwave-assisted glycothermal conditions: effect of solvent diols. Appl Catal A Gen 531:119–128

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science & ICT (MSIT) (NRF-2016R1A5A1009592).

Author information

Authors and Affiliations

Authors

Contributions

Dae-Won Lee contributed to the study conception and design. Material preparation, data collection and analysis were performed by Tae Uk Park and So Min Jin. The first draft of the manuscript was written by D-WL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dae-Won Lee.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 785 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, T.U., Jin, S.M. & Lee, DW. Investigation of the ozone-induced oxidation of soot over LaMnO3 catalyst using O3/O2 temperature-programmed desorption experiments. Reac Kinet Mech Cat 133, 259–276 (2021). https://doi.org/10.1007/s11144-021-01977-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01977-y

Keywords

Navigation