Skip to main content
Log in

Using waste crayfish shell derived catalyst to synthesize glycerol carbonate by transesterification reaction between glycerol and dimethyl carbonate

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Waste crayfish shell powder was utilized to prepare a series of solid base catalyst for the transesterification of glycerol with dimethyl carbonate to synthesize glycerol carbonate. Thermal decomposition behavior of waste crayfish shell powder was investigated by thermogravimetric analysis (TGA) and the different catalysts prepared at different calcinations temperature were characterized using FESEM, XRD, FTIR, BET techniques. It was clearly confirmed that the catalyst generated by the calcination of waste crayfish shell at 800 °C exhibited excellent catalytic activity, 98.7% glycerol conversion and 95.3% glycerol carbonate yield were obtained under mild reaction conditions such as 90 min of reaction time, 1:6 molar ratio of glycerol to dimethyl carbonate, 4 wt% of catalyst loading and 75 °C of reaction temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yue CG, Fan MM, Zhang PB, Liu LH, Jiang PP (2019) Monodisperse mesoporous La2O3 fakes for the synthesis of glycerol carbonate by efficiently catalyzing the transesterification of dimethyl carbonate with glycerol. Reac Kinet Mech Cat 128:763–778. https://doi.org/10.1007/s11144-019-01635-4

    Article  CAS  Google Scholar 

  2. Esan AO, Adeyemi AD, Ganesan S (2020) A review on the recent application of dimethyl carbonate in sustainable biodiesel production. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.120561

    Article  Google Scholar 

  3. Wang DF, Zhang XL, Liu CL, Cheng TT (2015) Synthesis of glycerol carbonate from glycerol and urea over lanthanum compounds. Reac Kinet Mech Cat 115:597–609. https://doi.org/10.1007/s11144-015-0858-8

    Article  CAS  Google Scholar 

  4. Niju S, Begum KMMS, Anantharaman N (2015) Preparation of biodiesel from waste frying oil using a green and renewable solid catalyst derived from egg shell. Environ Prog Sustain 34:248–254. https://doi.org/10.1002/ep.11939

    Article  CAS  Google Scholar 

  5. Olivares RDO, Okoye PU, Ituna-Yudonago JF, Njoku CN, Hameed BH, Song W, Li SX, Longoria A, Sebastian PJ (2020) Valorization of biodiesel byproduct glycerol to glycerol carbonateusing highly reusable apatite-like catalyst derived from waste. Biomass Convers Biorg. https://doi.org/10.1007/s13399-020-01122-0

    Article  Google Scholar 

  6. Fleischer M, Blattmann H, Mulhaupt R (2013) Glycerol-, pentaerythritol- and trimethylolpropane based polyurethanes and their cellulose carbonate composites prepared via the non-isocyanate route with catalytic carbon dioxide fixation. Green Chem 15:934–942. https://doi.org/10.1039/c3gc00078h

    Article  CAS  Google Scholar 

  7. Sonnati MO, Amigoni S, Givenchy EPT, Darmanin T, Choulet O, Guittard F (2013) Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications. Green Chem 15:283–306. https://doi.org/10.1039/c2gc36525a

    Article  CAS  Google Scholar 

  8. Tang Y, Xue YY, Li ZY, Yan TL, Zhou R, Zhang ZP (2019) Heterogeneous synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by LiCl/CaO. J Saudi Chem Soc 23:494–502. https://doi.org/10.1016/j.jscs.2018.11.003

    Article  CAS  Google Scholar 

  9. Caro P, Bandres M, Urrutigoïty M, Cecutti C, Thiebaud-Roux S (2019) Recent progress in synthesis of glycerol carbonate and evaluation of its plasticizing properties. Front Chem. https://doi.org/10.3389/fchem.2019.00308

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu JX, Li YJ, Liu HM, He DH (2019) Photo-thermal synergistically catalytic conversion of glycerol and carbon dioxide to glycerol carbonate over Au/ZnWO4-ZnO catalysts. Appl Catal B 244:836–843. https://doi.org/10.1016/j.apcatb.2018.12.018

    Article  CAS  Google Scholar 

  11. Zhang J, He DH (2014) Lanthanum-based mixed oxides for the synthesis of glycerol carbonate from glycerol and urea. Reac Kinet Mech Cat 113:375–392. https://doi.org/10.1007/s11144-014-0739-6

    Article  CAS  Google Scholar 

  12. Ryu YB, Baek JH, Kim Y, Lee MS (2015) Synthesis of glycerol carbonate by transesterification of glycerol with urea over Zn/Al mixed oxide. J Nanosci Nanotechno 15:321–325. https://doi.org/10.1166/jnn.2015.8343

    Article  CAS  Google Scholar 

  13. Changmai B, Laskar IB, Rokhum L (2019) Microwave-assisted synthesis of glycerol carbonate by the transesterification of glycerol with dimethyl carbonate using Musa acuminata peel ash catalyst. J Taiwan Inst Chem E 102:276–282. https://doi.org/10.1016/j.jtice.2019.06.014

    Article  CAS  Google Scholar 

  14. Fiorani G, Perosa A, Selva M (2018) Dimethyl carbonate: a versatile reagent for a sustainable valorization of renewables. Green Chem 20:288–322. https://doi.org/10.1039/c7gc02118f

    Article  CAS  Google Scholar 

  15. Okoye PU, Wang S, Xu LL, Li SX, Wang JY, Zhang LN (2019) Promotional effect of calcination temperature on structural evolution, basicity, and activity of oil palm empty fruit bunch derived catalyst for glycerol carbonate synthesis. Energy Convers Manage 179:192–200. https://doi.org/10.1016/j.enconman.2018.10.013

    Article  CAS  Google Scholar 

  16. Wang S, Xu LL, Okoye PU, Li SX, Tian CC (2018) Microwave-assisted transesterification of glycerol with dimethyl carbonate over sodium silicate catalyst in the sealed reaction system. Energy Convers Manage 164:543–551. https://doi.org/10.1016/j.enconman.2018.03.021

    Article  CAS  Google Scholar 

  17. Dibenedetto A, Angelini A, Aresta M, Ethiraj J, Ethiraj J, Fragale C, Nocito F (2011) Converting wastes into added value products: from glycerol to glycerol carbonate, glycidol and epichlorohydrin using environmentally friendly synthetic routes. Tetrahedron 67:1308–1313. https://doi.org/10.1016/j.tet.2010.11.070

    Article  CAS  Google Scholar 

  18. Kaur A, Ali A (2020) Lithium zirconate as a selective and cost-effective mixed metal oxide catalyst for glycerol carbonate production. Ind Eng Chem Res 59:2667–2679. https://doi.org/10.1021/acs.iecr.9b05747

    Article  CAS  Google Scholar 

  19. Parameswaram G, Srinivas M, Babu BH, Prasad PSS, Lingaiah N (2013) Transesterification of glycerol with dimethyl carbonate for the synthesis of glycerol carbonate over Mg/Zr/Sr mixed oxide base catalysts. Catal Sci Technol 3:3242–3249. https://doi.org/10.1039/c3cy00532a

    Article  CAS  Google Scholar 

  20. Okoye PU, Abdullah AZ, Hameed BH (2016) Glycerol carbonate synthesis from glycerol and dimethyl carbonate using trisodium phosphate. J Taiwan Inst Chem E 68:51–58. https://doi.org/10.1016/j.jtice.2016.09.011

    Article  CAS  Google Scholar 

  21. Lu PF, Wang HJ, Hu KK (2013) Synthesis of glycerol carbonate from glycerol and dimethyl carbonate over the extruded CaO-based catalyst. Chem Eng J 228:147–154. https://doi.org/10.1016/j.cej.2013.04.109

    Article  CAS  Google Scholar 

  22. Chang CW, Gong ZJ, Huang NC, Wang CY, Yu WY (2020) MgO nanoparticles confined in ZIF-8 as acid-base bifunctional catalysts for enhanced glycerol carbonate production from transesterification of glycerol and dimethyl carbonate. Catal Today 351:21–29. https://doi.org/10.1016/j.cattod.2019.03.007

    Article  CAS  Google Scholar 

  23. Bai RX, Wang Y, Wang S, Mei FM, Li T, Li GX (2013) Synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by NaOH/γ-Al2O3. Fuel Process Technol 106:209–214. https://doi.org/10.1016/j.fuproc.2012.07.027

    Article  CAS  Google Scholar 

  24. Wu YF, Song XH, Cai FF, Xiao GM (2017) Synthesis of glycerol carbonate from glycerol and diethyl carbonate over Ce-NiO catalyst: the role of multiphase Ni. J Alloy Compd 720:360–368. https://doi.org/10.1016/j.jallcom.2017.05.292

    Article  CAS  Google Scholar 

  25. Pattanaik PP, Kumar PM, Raju N (2020) Continuous synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over Fe–La mixed oxide catalysts. Catal Lett. https://doi.org/10.1007/s10562-020-03397-4

    Article  Google Scholar 

  26. Khayoon MS, Hameed BH (2013) Mg1+xCa1−xO2 as reusable and efficient heterogeneous catalyst for the synthesis of glycerol carbonate via the transesterification of glycerol with dimethyl carbonate. Appl Catal A 466:272–281. https://doi.org/10.1016/j.apcata.2013.06.044

    Article  CAS  Google Scholar 

  27. Manikandan M, Prabu M, Kumar SKA, Sangeetha P, Vijayaraghavan R (2018) Tuning the basicity of Cu-based mixed oxide catalysts towards the efficient conversion of glycerol to glycerol carbonate. Mol Catal 460:53–62. https://doi.org/10.1016/j.mcat.2018.09.002

    Article  CAS  Google Scholar 

  28. Du MM, Li QX, Dong WT, Geng T, Jiang YJ (2012) Synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by K2CO3/MgO. Res Chem Intermediat 38:1069–1077. https://doi.org/10.1007/s11164-011-0443-3

    Article  CAS  Google Scholar 

  29. Zhang XL, Wei SW, Zhao XY, Chen Z, Wu HW, Rong P, Sun Y, Li Y, Yu H, Wang DF (2020) Preparation of mesoporous CaO-ZrO2 catalysts without template for the continuous synthesis of glycerol carbonate in a fixed-bed reactor. Appl Catal A. https://doi.org/10.1016/j.apcata.2019.117313

    Article  Google Scholar 

  30. Ishak ZI, Sairi NA, Alias Y, Aroua MKT, Yusoff R (2017) A review of ionic liquids as catalysts for transesterification reactions of biodiesel and glycerol carbonate production. Catal Rev 59:44–93. https://doi.org/10.1080/01614940.2016.1268021

    Article  CAS  Google Scholar 

  31. Liu Y, Wang S, Liang Y, Zhou H, Li XS, Duan L, Chen S, Li SX, Zhang LN, Zhang AL (2020) Simultaneous removal of methyl orange and Cr(VI) using polyethyleneimine-modified corncob-derived carbon material. BioResources 15:7342–7356. https://doi.org/10.15376/biores.15.4.7342-7356

    Article  CAS  Google Scholar 

  32. Wang S, Wang JY, Sun PL, Xu LL, Okoye PU, Li SX, Zhang LN, Guo AB, Zhang J, Zhang AL (2019) Disposable baby diapers waste derived catalyst for synthesizing glycerol carbonate by the transesterification of glycerol with dimethyl carbonate. J Clean Prod 211:330–341. https://doi.org/10.1016/j.jclepro.2018.11.196

    Article  CAS  Google Scholar 

  33. Das B, Mohanty K (2019) Exploring the promotional effects of K, Sr, and Mg on the catalytic stability of red mud for the synthesis of glycerol carbonate from renewable glycerol. Ind Eng Chem Res 58:15803–15817. https://doi.org/10.1021/acs.iecr.9b00420

    Article  CAS  Google Scholar 

  34. Okoye PU, Abdullah AZ, Hameed BH (2017) Stabilized ladle furnace steel slag for glycerol carbonate synthesis via glycerol transesterification reaction with dimethyl carbonate. Energy Convers Manage 133:477–485. https://doi.org/10.1016/j.enconman.2016.10.067

    Article  CAS  Google Scholar 

  35. Algoufi YT, Hameed BH (2014) Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over K-zeolite derived from coal fly ash. Fuel Process Technol 126:5–11. https://doi.org/10.1016/j.fuproc.2014.04.004

    Article  CAS  Google Scholar 

  36. Okoye PU, Wang S, Khanday WA, Li SX, Tang T, Zhang LN (2020) Box–Behnken optimization of glycerol transesterification reaction to glycerol carbonate over calcined oil palm fuel ash derived catalyst. Renew Energy 146:2676–2687. https://doi.org/10.1016/j.renene.2019.08.072

    Article  CAS  Google Scholar 

  37. Wang S, Wang JY, Okoye PU, Chen S, Li SX, Duan L, Zhou H, Li SX, Tang T, Zhang LN, Zhang AL (2020) Application of Corncob residue-derived catalyst in the transesterification of glycerol with dimethyl carbonate to synthesize glycerol carbonate. BioResources 15:142–158. https://doi.org/10.15376/biores.15.1.142-158

    Article  CAS  Google Scholar 

  38. Ackefors HEG (2020) Freshwater crayfish farming technology in the 1990s: a European and global perspective. Fish Fish 1:337–359. https://doi.org/10.1046/j.1467-2979.2000.00023.x

    Article  Google Scholar 

  39. Zhu P, Gu ZJ, Hong S, Lian HL (2017) One-pot production of chitin with high purity from lobster shells using choline chloride–malonic acid deep eutectic solvent. Carbohyd Polym 177:217–223. https://doi.org/10.1016/j.carbpol.2017.09.001

    Article  CAS  Google Scholar 

  40. Zhang JQ, Hu XL, Zhang KJ, Xue YW (2019) Desorption of calcium-rich crayfish shell biochar for the removal of lead from aqueous solutions. J Colloid Interf Sci 554:417–423. https://doi.org/10.1016/j.jcis.2019.06.096

    Article  CAS  Google Scholar 

  41. Long L, Xue YW, Zeng YF, Yang K, Lin CJ (2017) Synthesis, characterization and mechanism analysis of modified crayfish shell biochar possessed ZnO nanoparticles to remove trichloroacetic acid. J Clean Prod 166:1244–1252. https://doi.org/10.1016/j.jclepro.2017.08.122

    Article  CAS  Google Scholar 

  42. Lv ST, Xia CD, Yang Q, Guo SC, You LY, Guo YP, Zheng JL (2020) Improvements on high-temperature stability, rheology, and stiffness of asphalt binder modified with waste crayfish shell powder. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.121745

    Article  Google Scholar 

  43. Komnitsas K, Zaharaki D, Pyliotis I, Vamvuka D, Bartzas G (2015) Assessment of pistachio shell biochar quality and its potential for adsorption of heavy metals. Waste Biomass Valor 6:805–816. https://doi.org/10.1007/s12649-015-9364-5

    Article  CAS  Google Scholar 

  44. Wang JC, Liang Y, Wang S, Okoye PU, Chen HX, Zhou Y, Xu JN, Meng ZH, Wang L, Li SX (2020) Using diaper waste to prepare magnetic catalyst for the synthesis of glycerol carbonate. Int J Polym Sci. https://doi.org/10.1155/2020/9403714

    Article  Google Scholar 

  45. Rittiron P, Niamnuy C, Donphai W, Chareonpanich M, Seubsai A (2019) Production of glycerol carbonate from glycerol over template sodium-aluminate catalysts prepared using a spray-drying method. ACS Omega 4:9001–9009. https://doi.org/10.1021/acsomega.9b00805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang S, Hao PF, Li SX, Zhang AL, Guan YY, Zhang LN (2017) Synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by calcined silicates. Appl Catal A 542:174–181. https://doi.org/10.1016/j.apcata.2017.05.021

    Article  CAS  Google Scholar 

  47. Wei GG, Zhang A, Chen KQ, Ouyang PK (2017) Enzymatic production of N-acetyl-d-glucosamine from crayfish shell wastes pretreated via high pressure homogenization. Carbohyd Polym 171:236–241. https://doi.org/10.1016/j.carbpol.2017.05.028

    Article  CAS  Google Scholar 

  48. Zhang JQ, Hu XL, Yan JP, Long L, Xue YW (2020) Crayfish shell biochar modified with magnesium chloride and its effect on lead removal in aqueous solution. Environ Sci Pollut R 27:9582–9588. https://doi.org/10.1007/s11356-020-07631-9

    Article  CAS  Google Scholar 

  49. Hu KK, Wang HJ, Liu YH, Yang C (2015) KNO3/CaO as cost-effective heterogeneous catalyst for the synthesis of glycerol carbonate from glycerol and dimethyl carbonate. J Ind Eng Chem 28:334–343. https://doi.org/10.1016/j.jiec.2015.03.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the support from the GDAS' Project of Science and Technology Development (2019GDASYL-0103025), the Open Research Fund of the State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (2018-02), the General Project Fund of Liaoning Education Department (LJGD2019014).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by JW. The first draft of the manuscript was written by JW and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Song Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 390 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Liu, H., Chen, Z. et al. Using waste crayfish shell derived catalyst to synthesize glycerol carbonate by transesterification reaction between glycerol and dimethyl carbonate. Reac Kinet Mech Cat 133, 191–208 (2021). https://doi.org/10.1007/s11144-021-01973-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01973-2

Keywords

Navigation