Skip to main content
Log in

Photocatalytic degradation of methylene blue using sprayed Mg diluted ZnO heterostructure thin films photocatalysts

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The thin layers of ZnOx%/MgO [x = 30, 40 and 50 at%], were prepared by the spray pyrolysis method on glass substrates at 450 °C, then tested for methyl blue (MB) degradation under visible irradiations. The ZnOx%/MgO [x = 30,40 and 50 at%] thin films were analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–Vis spectroscopy and Mott-Schottky analysis. X-ray diffraction analysis revealed that the layers have a polycrystalline nature of hexagonal (wurtzite) and cubic structure. Microstructures the films were also analyzed using scanning electron. The films show a radical change in the surface morphology in accordance with the XRD results. The above analyses confirm the co-existence of a mixture of the wurtzite (ZnO) structure and cubic phase of MgO. The use of these mixed layers in the photo degradation of MB gave satisfactory results. Indeed, the photocatalytic tests showed the efficiency of Mg diluted ZnO films with the best yield in the case of 50% diluted ZO films. It was confirmed that the ZnO50%/MgO had a profound effect on reduction of band gap and photocatalytic performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alnuaimi MM, Rauf MA, Ashraf SS (2007) Comparative decoloration study of Neutral Red by different oxidative processes. Dyes Pigm 72:367–371

    Article  CAS  Google Scholar 

  2. Mantilla A, Tzompantzi F, Fernández JL, Góngora JD, Mendoza G, Gómez R (2009) Photodegradation of 2, 4–dichlorophenoxyacetic acid using ZnAlFe layered double hydroxides as photocatalysts. Catal Today 148:119–123

    Article  CAS  Google Scholar 

  3. Rubin Thor R, Calvert Jack G, Rankin George T, Mac-Nevin W (1953) Photochemical synthesis of hydrogen peroxide at zinc oxide surfaces. J Am Chem 75:2850–2853

    Article  Google Scholar 

  4. Hoggas K, Nouveau C, Djelloul A, Bououdina M (2015) Structural, microstructural, and optical properties of Zn1–xMgxO thin films grown onto glass substrate by ultrasonic spray pyrolysis. Appl Phys A 120:745–755

    Article  CAS  Google Scholar 

  5. Zhang X, Min Li X, Lai Chen T, Ming Bian J, Yun Zhang C (2005) Structural and optical properties of Zn1-xMgxO thin films deposited by ultrasonic spray pyrolysis. Thin Solid Films 492:248–252

    Article  CAS  Google Scholar 

  6. Etacheri V, Roshan R, Kumar V (2012) Mg–doped ZnO nanoparticles for efficient sunlight– driven photocatalysis. ACS Appl Mater Interfaces 4:2717–2725

    Article  CAS  PubMed  Google Scholar 

  7. Abed C, Bouzidi C, Elhouichet H et al (2015) Mg doping induced high structural quality of solgel ZnO nanocrystals: application in photocatalysis. Appl Surf Sci 349:855–863

    Article  CAS  Google Scholar 

  8. Shan FK, Kim BI, Liu GX et al (2004) Blueshift of near band edge emission in Mg doped ZnO thin films and aging. J Appl Phys 95:4772

    Article  CAS  Google Scholar 

  9. Lu X, Liu Z, Zhu Y et al (2011) Sonochemical synthesis and photocatalytic property of zinc oxide nanoparticles doped with magnesium(II). Mater Res Bull 46:1638–1641

    Article  CAS  Google Scholar 

  10. Etacheri V, Roshan R, Kumar V (2012) Mg-doped ZnO nanoparticles for efficient sunlight- driven photocatalysis. ACS Appl Mater Interfaces 4:2717–2725

    Article  CAS  PubMed  Google Scholar 

  11. Caglar Y, Aksoy S, Ilican S, Caglar M (2009) Crystalline structure and morphological properties of undoped and Sn doped ZnO thin films. Superlattices Microstruct 46:469–475

    Article  CAS  Google Scholar 

  12. Peng LP, Fang L, Yang XF, Li YJ, Huang QL, Wu F, Kong CY (2009) Effect of annealing temperature on the structure and optical properties of In–doped ZnO thin films. J Alloys Compds 484:575–579

    Article  CAS  Google Scholar 

  13. Wang XC, Chen XM, Yang BH (2009) Microstructure and optical properties of polycrystalline ZnO films sputtered under different oxygen flow rates. J Alloys Compd 488:232–237

    Article  CAS  Google Scholar 

  14. Zhu G, Shulin G, Zhu S, Huang S, Ran G, Ye J, Zheng Y (2012) Optimization study of metal–organic chemical vapor deposition of ZnO on sapphire substrate. J Cryst Growth 349:6

    Article  CAS  Google Scholar 

  15. Aksay S, Caglar Y, Ilican S, Caglar M (2011) Sol–gel derived zinc oxide films: effect of deposition parameters on structure, microstructure and photoluminescence properties. Superlattices Microstruct 50:470–479

    Article  Google Scholar 

  16. Jiao SJ, Lu YM, Shen DZ, Zhang ZZ, Li BH, Zheng ZhH, Yao B, Zhang JY, Zhao D, Fan XW (2007) Donor–acceptor pair luminescence of nitrogen doping p–type ZnO by plasma–assisted molecular beam epitaxy. J Lumines 122:368–370

    Article  Google Scholar 

  17. Savchuk AI, Fediv VI, Savchuk SA, Perrone A (2005) Growth and characterization of ZnMnO thin films. Superlattices Microstruct 38:421–427

    Article  CAS  Google Scholar 

  18. Tsay ChY, Fan KSh, Lei ChM (2012) Synthesis and characterization of sol–gel derived gallium–doped zinc oxide thin films. J Alloys Compds 512:216–222

    Article  CAS  Google Scholar 

  19. Roguai S, Djelloul A, Nouveau C, Souier T, Dakhel AA, Bououdina M (2014) Structure, microstructure and determination of optical constants from transmittance data of co–doped Zn0.90Co0.05M0.05O (M = Al, Cu, Cd, Na) films. J Alloys Compd 599:150–158

    Article  CAS  Google Scholar 

  20. Roguai S, Djelloul A (2019) Synthesis and evaluation of the structural, microstructural, optical and magnetic properties of Zn1−xCoxO thin films grown onto glass substrate by ultrasonic spray pyrolysis. Appl Phys A 125:816

    Article  Google Scholar 

  21. Roguai S, Djelloul A (2020) A structural and optical properties of Cu–doped ZnO films prepared by spray pyrolysis. Appl Phys A 126:122

    Article  CAS  Google Scholar 

  22. Segnit ER, Holland AE (1965) The System MgO-ZnO-SiO2. Ceram Soc 48:412

    Article  Google Scholar 

  23. Choopun S, Vispute RD, Yang W, Sharma RP, Venkatesan T, Shen H (2002) Realization of band gap above 5.0 eV in metastable cubic- phase MgxZn1−xOMgxZn1−xO alloy films. ApplPhysLett 80:1529

    CAS  Google Scholar 

  24. Anandhi R, Mohan R, Swaminathan K, Ravichandran K (2012) Influence of aging time of the starting solution on the physical properties of fluorine doped zinc oxide films deposited by a simplified spray pyrolysis technique. Superlattices Microstruct 51:680–689

    Article  CAS  Google Scholar 

  25. Zheng G, Shang W, Xu L et al (2015) Enhanced photocatalytic activity of ZnO thin films deriving from a porous structure. Mater Lett 150:1–4

    Article  CAS  Google Scholar 

  26. Wemple SH, DiDomenico M (1971) Behavior of the electronic dielectric constant in covalent and ionic materials. Phys Rev B 3:1338–2135

    Article  Google Scholar 

  27. Xin M (2019) Optical properties of nanostructured ZnO: Eu film by sol–gel method. Surf Eng 35:947–953

    Article  CAS  Google Scholar 

  28. Sernelius BE, Berggren KF, Jin ZC et al (1988) Band–gap tailoring of ZnO by means of heavy Al doping. Phys Rev B 37:10244

    Article  CAS  Google Scholar 

  29. Boshta M, Abou-Helal MO, Ghoneim D, Mohsen NA, Zaghlool RA (2010) The photocatalytic activity of sprayed Zn1xMgxO thin films. Surf Coat Technol 205:271–274

    Article  CAS  Google Scholar 

  30. Moses Ezhil Raj A, Nehru LC, Jayachandran M, Sanjeeviraja C (2007) Spray pyrolysis deposition and characterization of highly (100) oriented magnesium oxide thin films. Cryst Res Technol 42:867–875

    Article  Google Scholar 

  31. Raj A, Nehru LC, Jayachandran M, Sanjeeviraja C (2007) Spray pyrolysis deposition and characterization of highly (100) oriented magnesium oxide thin films. Cryst Res Technol 42:867

    Article  CAS  Google Scholar 

  32. Bhattacharya P, Das RR, Katiyar RS (2004) Comparative study of Mg doped ZnO and multilayer ZnO/MgO thin films. Thin Solid Films 447:564

    Article  Google Scholar 

  33. Ohtomo A, Kawasaki M, Koida T, Masabuchi K, Koinuma H, Sakurai Y, Yoshida Y, Yasuda T, Segawa Y (1998) MgxZn1-xO as a II–VI widegap semiconductor alloy. Appl Phys Lett 72:2466

    Article  CAS  Google Scholar 

  34. Singh A, Vij A, Kumar D, Khanna PK, Kumar M, Gautam S, Chae KH (2013) Investigation of phase segregation in sol–gel derived ZnMgO thin films. Semicond Sci Technol 28:025004

    Article  CAS  Google Scholar 

  35. Koike K, Hama K, Nakashima I, Takada GY, Ogata KI, Sasa S, Inoue M, Yano M (2005) Molecular beam epitaxial growth of wide bandgap ZnMgO alloy films on (111)- oriented Si substrate toward UV-detector applications. J Cryst Growth 278:288

    Article  CAS  Google Scholar 

  36. Zhu Q, Lu J, Wang Y et al (2016) Burstein-Moss effect behind Au surface plasmon enhanced intrinsic emission of ZnO microdisks. Sci Rep 6:36194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rai RC (2013) Analysis of the Urbach tails in absorption spectra of undoped ZnO thin films. J Appl Phys 113:153508

    Article  Google Scholar 

  38. Urbach F (1953) The long–wavelength edge of photographic sensitivity and electronic absorption of solids. APS J Phys Rev 92:1324–1326

    Article  CAS  Google Scholar 

  39. Kawano Y, Kodani Y, Chantana J et al (2016) Effects of Na and secondary phases on physical properties of SnS thin film after sulfurization process. Jpn J Appl Phys 55:092301

    Article  Google Scholar 

  40. Hjiria M, Aida MS, Lemine OM et al (2019) Study of defects in Li–doped ZnO thin films. Mater Sci Semicond Process 89:149–153

    Article  Google Scholar 

  41. Saha D, Das AK, Ajimsha RS et al (2013) Effect of disorder on carrier transport in ZnO thin films grown by atomic layer deposition at different temperatures. J Appl Phys 114:043703

    Article  Google Scholar 

  42. Bhattacharya C, Lee HC, Bard AJ (2013) Rapid screening by scanning elec-trochemical microscopy (SECM) of dopants for Bi2WO6improved photo-catalytic water oxidation with Zn doping. J Phys Chem C 117:9633

    Article  CAS  Google Scholar 

  43. Zhao ZF, Zhou XY, Zhang WM (1990) Instrument analysis, 1st edn. Higher Education Press, Beijing

    Google Scholar 

  44. Sharma K, Vyas RK, Dalai AK (2017) Thermodynamic and kinetic studies of methylene blue degradation using reactive adsorption and its comparison with adsorption. J Chem Eng Data 62:3651–3662

    Article  CAS  Google Scholar 

  45. Lente G (2015) Deterministic kinetics in chemistry and systems biology. Springer, New York, pp 52–58

    Book  Google Scholar 

  46. Singh S, Thiyagarajan P, Kant KM, Anita D, Thirupathiah S, Rama N, Tiwari B, Kottaisamy M, Rao MSR (2007) Structure, microstructure and physical properties of ZnO based materials in various forms: bulk, thin film and nano. J Phys D Appl Phys 40:6312–6327

    Article  CAS  Google Scholar 

  47. Peng Y, Qin S, Wang W et al (2013) Fabrication of porous Cd–doped ZnO nanorods with enhanced photocatalytic activity and stability. CrystEngComm 15:6518–6525

    Article  CAS  Google Scholar 

  48. Wang Y, Zhao X, Duan L et al (2015) Structure, luminescence and photocatalytic activity of Mg-doped ZnO nanoparticles prepared by auto combustion method. Mater Sci Semicond Process 29:372–379

    Article  CAS  Google Scholar 

Download references

Aknowledgements

The authors would like to thank the National Project Research (PNR) and LASPI2A Laboratory of Khenchela University (Algeria) for their financial support of this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Roguai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roguai, S., Djelloul, A. Photocatalytic degradation of methylene blue using sprayed Mg diluted ZnO heterostructure thin films photocatalysts. Reac Kinet Mech Cat 132, 1225–1244 (2021). https://doi.org/10.1007/s11144-021-01963-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01963-4

Keywords

Navigation