Skip to main content
Log in

Electrochemical synthesis of CuO–ZnO for enhanced the degradation of Brilliant Blue (FCF) by sono-photocatalysis and sonocatalysis: kinetic and optimization study

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The purpose of this study was to improve the synthesis condition of the CuO–ZnO nanocomposite using a two-step protocol. Initially, an electrodeposition method was used to synthesize CuO nanoparticles (Nps) at different current densities (25–40–53A/dm2) then assembled with ZnO Nps via a milling process to obtain different catalysts. The performance of this new composite was evaluated by characterizing the nanocomposite with XRD, FE-SEM, FTIR, BET, BJH, pHzpc, UV-DRS and then comparing it with the sonocatalysis and sonophotocatalysis degradations of dye Brilliant Blue FCF (BBF). The preliminary results of the kinetic study and a structural characterization of the nanocomposite showed that the CuO–ZnO synthesis at low current density was an efficient catalyst to degrade BBF with a bigger surface area of 50.63 m2 g−1 and a pH zpc of 8.2. Furthermore, the optimization of operational parameters such as the synthesis temperature (300–500 °C), the mass ratio of CuO:ZnO (2–10%) and the catalyst dose (0.5–2 g L−1) was studied by a central composite design (CCD) using the NEMROOD Software. The adjustment of the model demonstrates an agreement between the experimental and predicted data as shown by the high values of the correlation coefficient (R2photosono = 0.999, R2sono = 0.998).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Abbreviations

ANOVA:

Analysis of variance

AOPS :

Advanced oxidation process

BBF:

Brilliant Blue

BET:

Brunauer–Emmett–Teller

BJH:

Barrett–Joyner–Halenda

CCD:

Central composite design

C0 :

Initial concentration

C:

Concentration at time t

CV:

Coefficient of varsiation

DF:

Desirability function

E:

Endpoint

Ebg :

Band gap

F-value:

F statistic

FE-SEM:

Field emission scanning electron microscopy

FWHW:

Full width at half maximum

IUPAC:

International Union of pure and applied chemistry

hv :

Energy of the incident photon

k:

Rate constant

kα :

X-ray spectral line

Nps :

Nanoparticules

pHzpc :

Zero point charge

R:

Universel gaz constant

R-squar:

Coefficient de determination

RSM:

Response surface methodology

US:

Ultrasonic irradiation

UV:

Ultraviolet

UV-DRS:

Ultraviolet diffuse reflection spectroscopy

X:

Amplitude

Yt :

Rate of concentration

α:

Absorption coefficient

β:

Full width at half maximum

θ:

Diffraction angle

λ:

Wavelength

υ:

Frequency

τ:

Interval time

References

  1. Darvishi Cheshmeh Soltani R, Safari M (2016) Periodate-assisted pulsed sonocatalysis of real textile wastewater in the presence of MgO nanoparticles: response surface methodological optimization. Ultrason Sonochem 32:181–190

    CAS  PubMed  Google Scholar 

  2. Lops C, Ancona A, Di Cesare K, Dumontel B, Garino N, Canavese G, Hernandez S, Cauda V (2019) Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro- and nano-particles of ZnO. Appl Catal B 243:629–640

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bisgin AT (2018) Simultaneous extraction and determination of allura red (E129) and Brilliant Blue FCF (E133) in Foodstuffs by column solid-phase spectrophotometry. J AOAC Int 102:181

    Google Scholar 

  4. Benomara A, Guenfoud F, Mokhtari M, Boudjemaa A (2020) Sonolytic, sonocatalytic and sonophotocatalytic degradation of a methyl violet 2B using iron-based catalyst. React Kinet Mech Cat 132:513

    Google Scholar 

  5. Mittal A (2006) Use of hen feathers as potential adsorbent for the removal of a hazardous dye, Brilliant Blue FCF, from wastewater. J Hazard Mater 128(2–3):233–239

    CAS  PubMed  Google Scholar 

  6. Ganiyu SO, Brito LRD, de Araújo Costa ECT, dos Santos EV, Martínez-Huitle CA (2019) Solar photovoltaic-battery system as a green energy for driven electrochemical wastewater treatment technologies: application to elimination of Brilliant Blue FCF dye solution. J Environ Chem Eng 7(1):102924

    CAS  Google Scholar 

  7. Bethi B, Sonawane SH, Bhanvase BA, Gumfekar SP (2016) Nanomaterials-based advanced oxidation processes for wastewater treatment: a review. Chem Eng Process Process Intensif 109:178–189

    CAS  Google Scholar 

  8. Akpan UG, Hameed BH (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170(2–3):520–529

    CAS  PubMed  Google Scholar 

  9. Lelario F, Brienza M, Bufo SA, Scrano L (2016) Effectiveness of different advanced oxidation processes (AOPs) on the abatement of the model compound mepanipyrim in water. J Photochem Photobiol A 321:187–201

    CAS  Google Scholar 

  10. Di J, Zhu M, Jamakanga R, Gai X, Li Y, Yang R (2020) Electrochemical activation combined with advanced oxidation on NiCo2O4 nanoarray electrode for decomposition of Rhodamine B. J Water Process Eng 37:101386

    Google Scholar 

  11. Dammak N, Bel Hadjltaief H, Hamza W, Benzina M (2020) Sonosynthesis of iron-supported clay for heavy metal removal via sonoassisted adsorption process. Arab J Sci Eng 45:7645

    CAS  Google Scholar 

  12. Liu Y, Wang C, Sui Z, Zou D (2018) Degradation of chlortetracycline using nano micro-electrolysis materials with loading copper. Sep Purif Technol 203:29–35

    CAS  Google Scholar 

  13. Darvishi Cheshmeh Soltani R, Jorfi S, Safari M, Rajaei MS (2016) Enhanced sonocatalysis of textile wastewater using bentonite-supported ZnO nanoparticles: response surface methodological approach. J Environ Manage 179:47–57

    CAS  PubMed  Google Scholar 

  14. Yaqoob AA, Parveen T, Umar K, Mohamad Ibrahim MN (2020) Role of nanomaterials in the treatment of wastewater: a review. Water 12(2):495

    CAS  Google Scholar 

  15. Chakma S, Moholkar VS (2015) Investigation in mechanistic issues of sonocatalysis and sonophotocatalysis using pure and doped photocatalysts. Ultrason Sonochem 22:287–299

    CAS  PubMed  Google Scholar 

  16. Chankhanittha T, Nanan S (2018) Hydrothermal synthesis, characterization and enhanced photocatalytic performance of ZnO toward degradation of organic azo dye. Mater Lett 226:79–82

    CAS  Google Scholar 

  17. Picca RA, Sportelli MC, Lopetuso R, Cioffi N (2016) Electrosynthesis of ZnO nanomaterials in aqueous medium with CTAB cationic stabilizer. J Sol-Gel Sci Technol 81(2):338–345

    Google Scholar 

  18. Zhang Y, Ram MK, Stefanakos EK, Goswami DY (2012) Synthesis, characterization, and applications of ZnO nanowires. J Nanomater 2012:1–22

    Google Scholar 

  19. Shekoohiyan S, Rahmania A, Chamack M, Moussavi G, Rahmanian O, Alipour V, Giannakis S (2020) A novel CuO/Fe2O3/ZnO composite for visible-light assisted photocatalytic oxidation of Bisphenol A: kinetics, degradation pathways, and toxicity elimination. Sep Purif Technol 242:116821

    CAS  Google Scholar 

  20. Boutra B, Güy N, Özacar M, Trari M (2020) Magnetically separable MnFe2O4/TA/ZnO nanocomposites for photocatalytic degradation of Congo Red under visible light. J Magn Magn Mater 497:165994

    CAS  Google Scholar 

  21. Chen G, Wang Q, Zhao Z, Gao L, Li X (2020) Synthesis and photocatalytic activity study of S-doped WO3 under visible light irradiation. Environ Sci Pollut Res Int 27(13):15103–15112

    CAS  PubMed  Google Scholar 

  22. Vivek E, Senthilkumar N, Pramothkumar A, Vimalan M, Potheher IV (2019) Synthesis of flower-like copper oxide microstructure and its photocatalytic property. Phys B 566:96–102

    CAS  Google Scholar 

  23. Chabri S, Dhara A, Show B, Adak D, Sinha A, Mukherjee N (2016) Mesoporous CuO–ZnO p–n heterojunction based nanocomposites with high specific surface area for enhanced photocatalysis and electrochemical sensing. Catal Sci Technol 6(9):3238–3252

    CAS  Google Scholar 

  24. Ardiansyah T, Rosari S (2017) Synthesis of iron(II, III) oxide/zinc oxide/copper(II) oxide (Fe3O4/ZnO/CuO) nanocomposites and their photosonocatalytic property for organic dye removal. J Colloid Interface Sci 491:27–36

    Google Scholar 

  25. Moozarm Nia P, Woi PM, Alias Y (2017) Facile one-step electrochemical deposition of copper nanoparticles and reduced graphene oxide as nonenzymatic hydrogen peroxide sensor. Appl Surf Sci 413:56–65

    CAS  Google Scholar 

  26. Zhang Q, Zhang K, Xu D, Yang G, Huang H, Nie F, Liu C, Yang S (2014) CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog Mater Sci 60:208–337

    CAS  Google Scholar 

  27. Sapkota BB, Mishra SR (2013) A simple ball milling method for the preparation of p-CuO/n-ZnO nanocomposite photocatalysts with high photocatalytic activity. J Nanosci Nanotechnol 13(10):6588–6596

    CAS  PubMed  Google Scholar 

  28. Kallivalappil Puthalath A, Hazel S, Kottappara R, Srinivasan A, Vijayan BK, Palantavida S (2020) Synthesis and antibacterial activity of silver-copper nano-composites formed by microwave assisted chemical reduction. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.05.238

    Article  Google Scholar 

  29. Kamali M, Davarazar M, Aminabhavi TM (2020) Single precursor sonochemical synthesis of mesoporous hexagonal-shape zero-valent copper for effective nitrate reduction. Chem Eng J 384:123359

    CAS  Google Scholar 

  30. Mahmood A, Tezcan F, Kardaş G (2017) Photoelectrochemical characteristics of CuO films with different electrodeposition time. Int J Hydrogen Energy 42(36):23268–23275

    CAS  Google Scholar 

  31. Porto MB, Costa JM, de Almeida Neto AF (2020) Ni-W alloys and their anticorrosive properties: Ni removal efficiency from galvanic wastewater by electrodeposition. J Water Process Eng 36:101250

    Google Scholar 

  32. Wang Y, Jiang T, Meng D, Yang J, Li Y, Ma Q, Han J (2014) Fabrication of nanostructured CuO films by electrodeposition and their photocatalytic properties. Appl Surf Sci 317:414–421

    CAS  Google Scholar 

  33. Hossain MA, Al-Gaashani R, Hamoudi H, Al Marri MJ, Hussein IA, Belaidi A, Merzougui BA, Alharbi FH, Tabet N (2017) Controlled growth of Cu2O thin films by electrodeposition approach. Mater Sci Semicond Process 63:203–211

    CAS  Google Scholar 

  34. Sathishkumar P, Sweena R, Wu JJ, Anandan S (2011) Synthesis of CuO–ZnO nanophotocatalyst for visible light assisted degradation of a textile dye in aqueous solution. Chem Eng J 171(1):136–140

    CAS  Google Scholar 

  35. Fashu S, Gu C-D, Zhang J-l, Huang M-l, Wang X-l, Tu J-P (2015) Effect of EDTA and NH4Cl additives on electrodeposition of Zn–Ni films from choline chloride-based ionic liquid. Trans Nonferrous Met Soc China 25(6):2054–2064

    CAS  Google Scholar 

  36. Bel Hadjltaief H, Ben Zina M, Galvez ME, Da Costa P (2016) Photocatalytic degradation of methyl green dye in aqueous solution over natural clay-supported ZnO–TiO 2 catalysts. J Photochem Photobiol A 315:25–33

    CAS  Google Scholar 

  37. Bishnoi S, Kumar A, Selvaraj R (2018) Facile synthesis of magnetic iron oxide nanoparticles using inedible Cynometra ramiflora fruit extract waste and their photocatalytic degradation of methylene blue dye. Mater Res Bull 97:121–127

    CAS  Google Scholar 

  38. Hamza W, Fakhfakh N, Dammak N, Belhadjltaeif H, Benzina M (2020) Sono-assisted adsorption of organic compounds contained in industrial solution on iron nanoparticles supported on clay: optimization using central composite design. Ultrason Sonochem 67:105134

    CAS  PubMed  Google Scholar 

  39. Hassani A, Eghbali P, Metin O (2018) Sonocatalytic removal of methylene blue from water solution by cobalt ferrite/mesoporous graphitic carbon nitride (CoFe2O4/mpg-C3N4) nanocomposites: response surface methodology approach. Environ Sci Pollut Res Int 25(32):32140–32155

    CAS  PubMed  Google Scholar 

  40. Mosleh S, Rahimi MR, Ghaedi M, Dashtian K (2016) Sonophotocatalytic degradation of trypan blue and vesuvine dyes in the presence of blue light active photocatalyst of Ag3PO4/Bi2S3-HKUST-1-MOF: central composite optimization and synergistic effect study. Ultrason Sonochem 32:387–397

    CAS  PubMed  Google Scholar 

  41. Nillohit M, Show B, Maji SK, Madhu U, Bhar SK, Mitra BC, Khan GG, Mondal A (2011) CuO nano-whiskers: electrodeposition, Raman analysis, photoluminescence study and photocatalytic activity. Mater Lett 65:3248–3250

    Google Scholar 

  42. Ben Ameur S, BelHadjltaief H, Duponchel B, Leroy G, Amlouk M, Guermazi H, Guermazi S (2019) Enhanced photocatalytic activity against crystal violet dye of Co and In doped ZnO thin films grown on PEI flexible substrate under UV and sunlight irradiations. Heliyon 5(6):e01912

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Shavisi Y, Sharifnia S, Mohamadi Z (2016) Solar-light-harvesting degradation of aqueous ammonia by CuO/ZnO immobilized on pottery plate: linear kinetic modeling for adsorption and photocatalysis process. J Environ Chem Eng 4(3):2736–2744

    CAS  Google Scholar 

  44. Zheng L, Pi F, Wang Y, Xu H, Zhang Y, Sun X (2016) Photocatalytic degradation of acephate, omethoate, and methyl parathion by Fe3O4@SiO2@mTiO2 nanomicrospheres. J Hazard Mater 315:11–22

    CAS  PubMed  Google Scholar 

  45. Ma J, Sun N, Wang C, Xue J, Qiang L (2018) Facile synthesis of novel Fe3O4@SiO2@mSiO2@TiO2 core-shell microspheres with mesoporous structure and their photocatalytic performance. J Alloy Compd 743:456–463

    CAS  Google Scholar 

  46. Das S, Srivastava VC (2017) Synthesis and characterization of ZnO/CuO nanocomposite by electrochemical method. Mater Sci Semicond Process 57:173–177

    CAS  Google Scholar 

  47. Kumaresan N, Sinthiya MMA, Ramamurthi K, Ramesh Babu R, Sethuraman K (2020) Visible light driven photocatalytic activity of ZnO/CuO nanocomposites coupled with rGO heterostructures synthesized by solid-state method for RhB dye degradation. Arab J Chem 13(2):3910–3928

    CAS  Google Scholar 

  48. Lente G (2015) Solving rate equations. Deterministic kinetics in chemistry and systems biology: the dynamics of complex reaction networks. Springer, Cham, pp 21–59

    Google Scholar 

  49. Pang YL, Abdullah AZ, Bhatia S (2011) Optimization of sonocatalytic degradation of Rhodamine B in aqueous solution in the presence of TiO2 nanotubes using response surface methodology. Chem Eng J 166(3):873–880

    CAS  Google Scholar 

  50. Shah AR, Tahir H (2019) Optimization of sono-electrocoagulation process for the removal of dye using central composite design. Mehran Univ Res J Eng Technol 38(2):399–414

    CAS  Google Scholar 

  51. Ramya Sankar MS, Sivasubramanian V (2019) Application of statistical design to optimize the electrocoagulation of synthetic Congo red dye solution and predicting the mechanism. Int J Environ Sci Technol 17(3):1373–1386

    Google Scholar 

  52. Jiang XC, Chen CY, Xiong SX, Yu AB (2011) Role of temperature in the growth of silver nanoparticles through a synergetic reduction approach. Nanoscale Res Lett 6:32

    CAS  PubMed  Google Scholar 

  53. Jolivet J-P, Cassaignon S, Chanéac C, Chiche D, Durupthy O, Portehault D (2010) Design of metal oxide nanoparticles: control of size, shape, crystalline structure and functionalization by aqueous chemistry. C R Chim 13(1–2):40–51

    CAS  Google Scholar 

  54. Samad A, Furukawa M, Katsumata H, Suzuki T, Kaneco S (2016) Photocatalytic oxidation and simultaneous removal of arsenite with CuO/ZnO photocatalyst. J Photochem Photobiol A 325:97–103

    CAS  Google Scholar 

  55. Dheyab MA, Aziz AA, Jameel MS, Khaniabadi PM, Mehrdel B (2020) Mechanisms of effective gold shell on Fe3O4 core nanoparticles formation using sonochemistry method. Ultrason Sonochem 64:104865

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the University of Sciences and technology of Houari Boumediene (Algeria) and National Engineering school of Sfax (Tunisia) for allowing access to their technical facilities. We thank Marie-Anne HAIRAN, English teacher, for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayet Djelal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (DOCX 610 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youcef, R., Benhadji, A., Zerrouki, D. et al. Electrochemical synthesis of CuO–ZnO for enhanced the degradation of Brilliant Blue (FCF) by sono-photocatalysis and sonocatalysis: kinetic and optimization study. Reac Kinet Mech Cat 133, 541–561 (2021). https://doi.org/10.1007/s11144-021-01961-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01961-6

Keywords

Navigation