Skip to main content
Log in

Evaluation of post synthesis treatments over commercial ZSM-5 zeolite in the reaction route of oleic acid esterification with methyl acetate

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The objective of this work was to evaluate the influence of post-synthesis treatments applied on high ratio Si/Al commercial ZSM-5 zeolite on its properties and catalytic activity in oleic acid esterification with methyl acetate. Treatments as acidification, desilication, ion exchange and mechanical and ultrasound-assisted impregnation tungsten oxide were applied. The catalysts were properly characterized and the esterification reactions were performed at 240 °C, 1:10 oleic acid:methyl acetate molar ratio and 10% (m/m) catalyst concentration. Properties of the catalysts were significantly changed by the applied treatments, resulting in different yields and isomers distribution of cis and trans esters. The highest ester yield, equal to 66.71%, was obtained with zeolite subjected to ion exchange. This catalyst also provided an equal distribution between the two isomers. It was proposed, based on kinetic experiments, a mechanism for the reaction consisting of isomerization of oleic acid to elaidic acid followed by esterification of both fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bergmann JC, Tupinambá DD, Costa OYA, Almeida JRM, Barreto CC, Quirino BF (2013) Biodiesel production in Brazil and alternative biomass feedstocks. Renew Sustain Energy Rev 21:411–420. https://doi.org/10.1016/j.rser.2012.12.058

    Article  Google Scholar 

  2. Farobie O, Matsumura Y (2017) State of the art of biodiesel production under supercritical conditions. Prog Energy Combust Sci 63:173–203. https://doi.org/10.1016/j.pecs.2017.08.001

    Article  Google Scholar 

  3. Guan G, Kusakabe K, Sakurai N, Moriyama K (2009) Transesterification of vegetable oil to biodiesel fuel using acid catalysts in the presence of dimethyl ether. Fuel 88:81–86. https://doi.org/10.1016/j.fuel.2008.07.021

    Article  CAS  Google Scholar 

  4. Xie W, Wang T (2013) Biodiesel production from soybean oil transesterification using tin oxide-supported WO3 catalysts. Fuel Process Technol 109:150–155. https://doi.org/10.1016/j.fuproc.2012.09.053

    Article  CAS  Google Scholar 

  5. Celante D, Schenkel JVD, Castilhos F (2018) Biodiesel production from soybean oil and dimethyl carbonate by potassium methoxide. Fuel 212:101–107. https://doi.org/10.1016/j.fuel.2017.10.040

    Article  CAS  Google Scholar 

  6. Alessio C, Ribeiro JS, Celante D, Brondani L, Castilhos F (2017) Kinetics of methyl esters production with dimethyl carbonate over niobium phosphate. Energy Convers Manage 151:670–680. https://doi.org/10.1016/j.enconman.2017.09.010

    Article  CAS  Google Scholar 

  7. Visioli LJ, Castilhos F, Silva C (2019) Use of heterogeneous acid catalyst combined with pressurized conditions for esters production from macauba pulp oil and methyl acetate. J Supercrit Fluid 150:65–74. https://doi.org/10.1016/j.supflu.2019.03.023

    Article  CAS  Google Scholar 

  8. Visioli LJ, Trentini CP, Castilhos F, Silva C (2018) Esters production in continuous reactor from macauba pulp oil using mehyl acetate in pressurized conditions. J Supercrit Fluid 140:238–247. https://doi.org/10.1016/j.supflu.2018.06.018

    Article  CAS  Google Scholar 

  9. Ribeiro JS, Celante D, Simões SS, Bassaco MM, Silva C, Castilhos F (2017) Efficiency of heterogeneous catalysts in interesterification reaction from macaw oil (Acrocomia aculeata) and methyl acetate. Fuel 200:499–505. https://doi.org/10.1016/j.fuel.2017.04.003

    Article  CAS  Google Scholar 

  10. Visioli LJ, Castilhos F, Cardozo-Filho L, Mello BTF, Silva C (2016) Production of esters from soybean oil deodorizer distillate in pressurized ethanol. Fuel Process Technol 149:326–331. https://doi.org/10.1016/j.fuproc.2016.04.038

    Article  CAS  Google Scholar 

  11. Saka S, Isayama Y (2009) A new process for catalyst-free production of biodiesel using supercritical methyl acetate. Fuel 88:1307–1313. https://doi.org/10.1016/j.fuel.2008.12.028

    Article  CAS  Google Scholar 

  12. Alves MAL, Pinheiro NSC, Brondani LN, Celante D, Ketzer F, Castilhos F (2019) Assessment of niobuim phosphate as heterogeneous catalyst in esterification with methyl acetate. J Chem Technol Biotechnol 94:3172–3179. https://doi.org/10.1002/jctb.6124

    Article  CAS  Google Scholar 

  13. Ketzer F, Celante D, Castilhos F (2020) Catalytic performance and ultrasonic-assited impregnation effects on WO3/USY zeolites in esterification of oleic acid with methyl acetate. Micropor Mesopor Mater 291:109704. https://doi.org/10.1016/j.micromeso.2019.109704

    Article  CAS  Google Scholar 

  14. Kaur N, Ali A (2015) Preparation and application of Ce/ZrO2–TiO2/SO42- as solid catalyst for the esterification of fatty acids. Renew Energy 81:421–431. https://doi.org/10.1016/j.renene.2015.03.051

    Article  CAS  Google Scholar 

  15. Simões SS, Ribeiro JS, Celante D, Brondani LN, Castilhos F (2020) Heterogeneous catalyst screening for fatty acid methyl esters production through ineresterification reaction. Renew Energy 146:719–726. https://doi.org/10.1016/j.renene.2019.07.023

    Article  CAS  Google Scholar 

  16. Doyle AM, Albayati TM, Abbas AS, Alismaeel ZT (2016) Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin. Renew Energy 97:19–23. https://doi.org/10.1016/j.renene.2016.05.067

    Article  CAS  Google Scholar 

  17. Freitas EF, Paiva MF, Dias SCL, Dias JA (2009) Generation and characterization of catalytically active sites of heteropolyacids on zeolite Y for liquid-phase esterification. Catal Today 289:70–77. https://doi.org/10.1016/j.cattod.2016.08.010

    Article  CAS  Google Scholar 

  18. Alismaeel ZT, Abbas AS, Albayati TM, Doyle AM (2018) Biodiesel from batch and continuous oleic acid esterification using zeolite catalysts. Fuel 234:170–176. https://doi.org/10.1016/j.fuel.2018.07.025

    Article  CAS  Google Scholar 

  19. Chung KH, Park BG (2009) Esterification of oleic acid in soybean oil on zeolite catalysts with different acidity. J Ind Eng Chem 15:388–392. https://doi.org/10.1016/j.jiec.2008.11.012

    Article  CAS  Google Scholar 

  20. Vieira SS, Magriotis ZM, Graça I, Fernandes A, Ribeiro MF, Lopes JMFM, Coelho SM, Santos NAV, Saczk AA (2017) Production of biodiesel using HZSM-5 zeolites modified with citric acid and SO42-/LA2O3. Catal Today 279:267–273. https://doi.org/10.1016/j.cattod.2016.04.014

    Article  CAS  Google Scholar 

  21. Vieira SS, Magriotis ZM, Santos NAV, Saczk AA, Hori CE, Arroyo PA (2013) Biodiesel production by free fatty acid esterification using lanthanum (La3+) and HZSM-5 based catalysts. Bioresour Technol 133:248–255. https://doi.org/10.1016/j.biortech.2013.01.107

    Article  CAS  PubMed  Google Scholar 

  22. Bhagiyalakshmi M, Vinoba M, Grace AN (2013) Transesterification of Jatropha oil over Ceria-impregnated ZSM-5 for the production of biodiesel. Bull Korean Chem Soc 34(10):3059–3064. https://doi.org/10.5012/bkcs.2013.34.10.3059

    Article  CAS  Google Scholar 

  23. Liu G, Zhang Q, Han Y, Tan Y (2012) Direct oxidation of dimethyl ether to ethanol over WO3/HZSM-5 catalysts. Catal Commun 26:173–177. https://doi.org/10.1016/j.catcom.2012.05

    Article  Google Scholar 

  24. Liu C, Liu S, Zhou H, Su J, Jiao W, Zhang L, Wang Y, He H, Xie Z (2019) Selective conversion of syngas to aromatics over metal oxide/HZSM-5 catalyst by matching the activity between CO hydrogenation and aromatization. Appl Catal A 585:117206. https://doi.org/10.1016/j.apcata.2019.117206

    Article  CAS  Google Scholar 

  25. Paysepar H, Rao KTV, Yuan Z, Shui H, Xu C (2018) Improving activity of ZSM-5 zeolite catalyst for the production of monomeric aromatics/phenolics from hydrolysis lignin via catalytic fast pyrolysis. Appl Catal A 563:154–162. https://doi.org/10.1016/j.apcata.2018.07.003

    Article  CAS  Google Scholar 

  26. Amin NAS, Pheng SE (2006) Methane conversion to higher hydrocarbons over W/HZSM-5-based catalysts in the presence of oxygen. Catal Commun 7:403–407. https://doi.org/10.1016/j.catcom.2005.10.019

    Article  CAS  Google Scholar 

  27. Amin NAS, Anggoro DD (2004) Optimization of direct conversion of methane to liquid fuels over Cu loaded W/ZSM-5 catalyst. Fuel 83:487–494. https://doi.org/10.1016/j.fuel.2003.09.013

    Article  CAS  Google Scholar 

  28. Coelho A, Costa L, Marques MM, Fonseca IM, Lemos MANDA, Lemos F (2012) The effect of ZSM-5 zeolite acidity on the caalytic degradarion of high-density polyethylene using simultaneous DSC/TG analysis. Appl Catal A 413–414:183–191. https://doi.org/10.1016/j.apcata.2011.11.010

    Article  CAS  Google Scholar 

  29. Wang Z, Wang L, Jiang Y, Hunger M, Huang J (2014) Cooperativity of Bronsted and Lewis acid sites on zeolite for glycerol dehydration. ACS Catal 4:1144–1147. https://doi.org/10.1021/cs401225k

    Article  CAS  Google Scholar 

  30. Wu W, Weitz E (2014) Modification of acid sites in ZSM-5 by ion-exchange: an in-situ FTIR Study. Appl Surf Sci 316:405–415. https://doi.org/10.1016/j.apsusc.2014.07.194

    Article  CAS  Google Scholar 

  31. Serrano DP, Escola JM, Sanz R, Garcia RA, Peral A, Moreno I, Linares M (2016) Herarchical ZSM-5 zeolite with uniform mesopores and improved catalytic properties. New J Chem 40:4206–4216. https://doi.org/10.1039/c5nj02856f

    Article  CAS  Google Scholar 

  32. Alaba PA, Sani YM, Mohammed IY, Abakr YA, Daud WMAW (2016) Synthesis and application of hierarchical mesoporous HZSM-5 for biodiesel production from shea butter. J Taiwan Inst Chem Eng 59:405–412. https://doi.org/10.1016/j.jtice.2015.09.006

    Article  CAS  Google Scholar 

  33. Wang J, Zhong Z, Ding K, Zhang B, Deng A, Min M, Chen P (2017) Successive desilication and dealumination of HZSM-5 in catalytic conversion of waste cooking oil to produce aromatics. Energy Convers Manage 147:100–107. https://doi.org/10.1016/j.enconman.2017.05.050

    Article  CAS  Google Scholar 

  34. Mochizuki H, Yokoi T, Imai H, Namba S, Kondo JN, Tatsumi T (2012) Effect of desilication of H-ZSM-5 by alkali treatment on catalytic performance in hexane cracking. Appl Catal A 449:188–197. https://doi.org/10.1016/j.apcata.2012.10.003

    Article  CAS  Google Scholar 

  35. Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070. https://doi.org/10.1016/j.fuproc.2004.11.002

    Article  CAS  Google Scholar 

  36. Hartman L, Lago RC (1973) Rapid preparation of fatty acid methyl esters from lipids. Lab Pract 22:474–476

    Google Scholar 

  37. Campanelli P, Banchero M, Manna L (2010) Syntehsis of biodiesel from edible, non-edible and waste cooking oils via supercritical methyl acetate transesterification. Fuel 89:3675–3682. https://doi.org/10.1016/j.fuel.2010.07.033

    Article  CAS  Google Scholar 

  38. Freedman ML (1959) The tungstic acids. J Am Chem Soc 81:3834–3839

    Article  CAS  Google Scholar 

  39. Nogueira HIS, Cavaleiro AMV, Rocha J, Trindade T, Jesus JDP (2004) Synthesis and characterization of tungsten trioxide powders prepared from tungstic acid. Mater Res Bull 39:683–693. https://doi.org/10.1016/j.materresbull.2003.11.004

    Article  CAS  Google Scholar 

  40. Costa AA, Braga PRS, Macedo JL, Dias JA, Dias SCL (2012) Structural effects of WO3 incorporation in USY zeolite and application to free fatty acids esterification. Micropor Mesopor Mater 147:142–148. https://doi.org/10.1016/j.micromeso.2011.06.008

    Article  CAS  Google Scholar 

  41. Kusmiyati K, Amin NAS (2005) Dual effects of supported W catalysts for dehydroaromatization of methane in the absence of oxygen. Catal Lett 102:69–78. https://doi.org/10.1007/s10562-005-5205-7

    Article  CAS  Google Scholar 

  42. Anggoro DD, Amin NAS (2006) Methane to liquid hydrocarbons over tungsten-ZSM-5 and tungsten loaded Cu/ZSM-5 catalysts. J Nat Gas Chem 15(4):340–347. https://doi.org/10.1016/S1003-9953(07)60016-

    Article  CAS  Google Scholar 

  43. Škundrić JP, Škundrić B, Petrović R, Lazić D, Levi Z, Čegar N (2016) Textural and catalytic characteristics of decationized mordenite and ZSM-5 zeolite. Contemp. Mater. VII–1:11–20. https://doi.org/10.7251/COMEN1601011S

    Article  Google Scholar 

  44. Saito A, Foley HC (1995) High-resolution nitrogen and argon adsorption on ZSM-5 zeolites: effects of cation exchange and Si/Al ratio. Micropor Mater 3:543–556. https://doi.org/10.1016/0927-6513(94)00064-3

    Article  CAS  Google Scholar 

  45. Sadowska K, Góra-Marek K, Drozdek M, Kústrowski P, Datka J, Martínez Triguero J, Rey F (2013) Hierarchic zeolites: zeolite ZSM-5 desilicated with NaOH and NaOH/tetrabutylamine hydroxide. Micropor Mesopor Mater 168:195–205. https://doi.org/10.1016/j.micromeso.2012.09.033

    Article  CAS  Google Scholar 

  46. Kulkarni SB, Shiralkar VP, Kotashane AN, Borade RB, Ratnasamy P (1982) Studies in the synthesis of ZSM-5 zeolites. Zeolites 2:313–318. https://doi.org/10.1016/S0144-2449(82)80077-8

    Article  CAS  Google Scholar 

  47. Guisnet M, Ribeiro FR (2006) Les zéolithes, um nanomonde au service de la catalyse. EDP Sciences, Les Ulis

    Google Scholar 

  48. Zanatta ER, Dal Pozzo DM, Arroyo PA (2017) Caracterização da acidez de sólido catalítico AI-SBA-15 por método alternativo de adsorção de molécula prova em fase líquida. Acta Iguazu 6:35–46

    Google Scholar 

  49. Parry EP (1963) An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. J Catal 2:371–379. https://doi.org/10.1016/0021-9517(63)90102-7

    Article  CAS  Google Scholar 

  50. Groen JC, Jansen JC, Moujlin JA, Pérez-Ramírez J (2004) Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication. J Phys Chem B 108(35):13062–13065. https://doi.org/10.1021/jp047194f

    Article  CAS  Google Scholar 

  51. Wattanakit C (2013) The novel synthesis of microporous amd mesoporous materials and their applications for hydrocarbon transformation and chiral recognition. HAL, Bordeaux

    Google Scholar 

  52. Musić S, Filipović-Vinceković V, Sekovanić L (2011) Precipitation of amorphous SiO2 particles and their properties. Braz J Chem Eng 28(1):89–94. https://doi.org/10.1590/S0104-66322011000100011

    Article  Google Scholar 

  53. Park JW, Seo G (2009) IR study on methanol-to-olefin reaction over zeolites with different pore structures and acidities. Appl Catal A 356:180–188. https://doi.org/10.1016/j.apcata.2009.01.001

    Article  CAS  Google Scholar 

  54. Xue T, Wang YM, He MY (2012) Synthesis of ultra-high-silica ZSM-5 zeolites with tunable crystal sizes. Solid State Sci 14:409–418. https://doi.org/10.1016/j.jngse.2014.12.001

    Article  CAS  Google Scholar 

  55. Yaripour F, Shariatinia Z, Sahebdelfar S, Irandoukht A (2015) Conventional hydrothermal synthesis of nanostructured H-ZSM-5 catalysts using various templates for light olefins production from methanol. J Nat Gas Sci Eng 22:260–269. https://doi.org/10.1016/j.jngse.2014.12.001

    Article  CAS  Google Scholar 

  56. Yahia MB, Torkia YB, Knani S, Hachicha MA, Khaldaoui M, Lamine AB (2013) Models for type VI adsorption isotherms from a statistical mechanical formulation. Adsorpt Sci Technol 31(4):341–357. https://doi.org/10.1260/0263-6174.31.4.341

    Article  Google Scholar 

  57. Thommes M, Kaneko K, Neimark AV, Oliver JP, Rodríguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  58. Al-Dughaither A, Lasa H (2014) Zeolites with different SiO2, AI2O3 ratios. Characterization and NH3 desorption kinetics. Ind Eng Chem Res 53:15303–15316. https://doi.org/10.1021/ie4039532

    Article  CAS  Google Scholar 

  59. Cooper CA, Lin YS (2007) Synthesis and characterization of silicalite powders and membranes with micro-meso bimodal pores. J Mater Sci 42:320–327. https://doi.org/10.1007/s10853-006-1020-9

    Article  CAS  Google Scholar 

  60. Llewellyn P, Coulumb JP, Reichert H, Patarin J, Grillet Y, Rouquerol J (1992) A microcalorimetric study of the different states of argon and nitrogen adsorbed AT 77 K on silicatite-I and ZSM-5. J Therm Anal Calorim 38:683–692. https://doi.org/10.1007/BF01979397

    Article  CAS  Google Scholar 

  61. Weitkamp J (2000) Zeolites and catalyses. Solid State Ion 131:175–188. https://doi.org/10.1016/S0167-2738(00)00632-9

    Article  CAS  Google Scholar 

  62. Busca G (2007) Acid catalysts in industrial hydrocarbon chemistry. Chem Rev 107:5366–5410. https://doi.org/10.1021/cr068042e

    Article  CAS  PubMed  Google Scholar 

  63. Flanigen EM, Bennett JM, Grose RW, Cohen JP, Patton RL, Kirchner RM (1978) Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature 271:512–516. https://doi.org/10.1038/271512a0

    Article  CAS  Google Scholar 

  64. Llewellyn PL, Coulomb JP, Grillet Y, Patarin J, Andre G, Rouquerol J (1993) Adsorption by MFI-type zeolites examined by isothermal microcalorimetry and neutron diffraction. 2. Nitrogen Carbon Monoxide Langmuir 9:1852–1856. https://doi.org/10.1021/la00031a037

    Article  CAS  Google Scholar 

  65. Mlekodaj K, Tarach K, Datka J, Góra-Marek K, Makowski W (2004) Porosity and accessibility of acid sites in desilicated ZSM-5 zeolites studied using adsorption of probe molecules. Micropor Mesopor Mater 183:54–61. https://doi.org/10.1016/j.micromeso.2013.08.051

    Article  CAS  Google Scholar 

  66. Müller U, Reichert H, Robens E, Unger KK, Grillet Y, Rouquerol F, Rouquerol J, Pan D, Mersmann A (1989) High-resolution sorptiun studies of argon and nitrogen on large crystals of microporous zeolite ZSM-5. Fresenius Z Anal Chem 333:433–436. https://doi.org/10.1007/BF00572345

    Article  Google Scholar 

  67. Sulikowski B, Klinowski J (1992) Preparation and characterization of titanosilicates with ZSM-5 structure. Appl Catal A 84:141–153. https://doi.org/10.1016/S0167-2991(07)80803-2

    Article  CAS  Google Scholar 

  68. Čejka J, van Bekkum H, Corma A, Schüth F (2007) Introduction to zeolite science and practice. Elsevier, Amsterdam, pp 495–524

    Google Scholar 

  69. Nandiwale KY, Sonar SK, Niphadkar PS, Joshi PN, Deshpande SS, Patil VS, Bokade VV (2013) Catalytic upgrading of renewable levulinic acid to ethyl levulinate biodiesel using dodecatungstophosphoric acid supported on desilicated H-ZSM-5 as catalyst. Appl Catal A 460–461:90–98. https://doi.org/10.1016/j.apcata.2013.04.024

    Article  CAS  Google Scholar 

  70. You SJ, Park ED (2014) Effects of dealumination and desilication of H-ZSM-5 on xylose dehydration. Micropor Mesopor Mater 186:121–129. https://doi.org/10.1016/j.micromeso.2013.11.042

    Article  CAS  Google Scholar 

  71. Storck S, Bretinger H, Maier WF (1998) Characteriziation of micro and mesoporous solids by physisorption methods and pore-size analysis. Appl Catal A 174:137–146. https://doi.org/10.1016/S0926-860X(98)00164-1

    Article  CAS  Google Scholar 

  72. Bal’zhinimaev BS, Paukshtis EA, Toktarev AV, Kovalyov EV, Yaranova MA, Smimov AE, Stompel S (2019) Effect of water on toluene adsorption over high silica zeolites. Micropor Mesopor Mater 277:70–77. https://doi.org/10.1016/j.micromeso.2018.10.023

    Article  CAS  Google Scholar 

  73. Gould NS, Xu B (2018) Quantification of acid site densities on zeolite in the presence of solventes via determination of extinction coefficients of adsorbed pyridine. J Catal 358:80–88. https://doi.org/10.1016/j.jcat.2017.11.016

    Article  CAS  Google Scholar 

  74. Busca G (2017) Acidity and basicity of zeolites: a fundamental approach. Micropor Mesopor Mater 254:3–16. https://doi.org/10.1016/j.micromeso.2017.04.007

    Article  CAS  Google Scholar 

  75. Phung TK, Carnasciali MM, Finocchio E, Busca G (2014) Catalytic conversion of ethyl acetate over faujasite zeolites. Appl Catal A 470:72–80. https://doi.org/10.1016/j.apcata.2013.10.028

    Article  CAS  Google Scholar 

  76. Veiga PM, Gomes ACL, Veloso CO, Henriques CA (2017) Acid zeolites for glycerol etherification with ethyl alcohol: catalytic activity and catalyst properties. Appl Catal A 548:2–15. https://doi.org/10.1016/j.apcata.2017.06

    Article  CAS  Google Scholar 

  77. Jin F, Li Y (2009) FTIR and TDP examination of the distributive properties of acid sites on ZSM-5 zeolite with pyridine as a probe molecule. Catal Today 145:101–107. https://doi.org/10.1016/j.cattod.2008.06.007

    Article  CAS  Google Scholar 

  78. Vieira SS, Magriotis ZM, Ribeiro MF, Graça I, Fernandes A, Lopes JMFM, Coelho SM, Santos NAV, Saczk AA (2015) Use of HZSM-5 modified whit citric acid as acid heterogeneous catalyst for biodiesel production via esterification of oleic acid. Micropor Mesopor Mater 201:160–168. https://doi.org/10.1016/j.micromeso.2014.09.015

    Article  CAS  Google Scholar 

  79. Vigier KO, Barrault J, Pouilloux Y (2009) Cis-trans isomerization of methyl cis-9-octadecenoate in the presence of cobalt tin catalysts. J Mol Catal A Chem 306:102–106. https://doi.org/10.1016/j.molcata.2009.02.033

    Article  CAS  Google Scholar 

  80. Reaume SJ, Ellis N (2011) Use of isomerization and hydroisomerization reactions to improve the cold flow properties of vegetable oil based biodiesel. J Am Chem Soc 88:661–671. https://doi.org/10.1007/s11746-010-1718-3

    Article  CAS  Google Scholar 

  81. Zhang S, Zhang ZC (2007) Skeletal isomerization of unsaturated fatty acids: the role of mesopores in HBeta zeolites. Catal Lett 115(3–4):114–121. https://doi.org/10.1007/s10562-007-9083-z

    Article  CAS  Google Scholar 

  82. Jęczmionek Ł, Krasodomski W (2015) Hydroconversion of vegetable oils isomerized over ZSM-5: composition and properties of hydroraffinates. Energy Fuels 29:3739–3747. https://doi.org/10.1021/acs.energyfuels.5b00582

    Article  CAS  Google Scholar 

  83. Zhang ZC, Dery M, Zhang S, Steichen D (2004) Process for the production of branched-chain fatty acids. J Surfact Deterg 7(3):211–215. https://doi.org/10.1007/s11743-004-0306-x

    Article  CAS  Google Scholar 

  84. Cheng N, Zhang J, Yin J, Li S (2018) Computational and experimental research on mechanism of cis/trans isomerization of oleic acid. Heliyon 4:e00768. https://doi.org/10.1016/j.heliyon.2018.e00768

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ramírez-Verduzco LF, Rodríguez-Rodríguez JE, Jaramillo-Jacob AR (2012) Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 91:102–111. https://doi.org/10.1016/j.fuel.2011.06.070

    Article  CAS  Google Scholar 

  86. Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci 2:759–766. https://doi.org/10.1039/b903941d

    Article  CAS  Google Scholar 

  87. Knothe G, Steidley KR (2005) Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel 84:1059–1065. https://doi.org/10.1016/j.fuel.2005.01.016

    Article  CAS  Google Scholar 

  88. Knothe G (2014) A comprehensive evaluation of the cetane numbers of fatty acid methyl esters. Fuel 119:6–13. https://doi.org/10.1016/j.fuel.2013.11.020

    Article  CAS  Google Scholar 

  89. Reaume SJ, Ellis N (2013) Use of isomerization and hydroisomerization reactions to improve the cold flow properties of vegetable oil based biodiesel. Energies 6:619–633. https://doi.org/10.3390/en6020619

    Article  CAS  Google Scholar 

  90. Sukjit E, Tongroon M, Chollacoop N, Yoshimura Y, Poapongsakorn P, Lapuerta M, Dearn KD (2019) Improvement of tribological behavior of palm biodiesel via partial hydrogenation of unsaturated fatty acid methyl esters. Wear 426–427:813–818. https://doi.org/10.1016/j.wear.2018.12.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank to Zeochem for supplying zeolites and to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for financial support (404675/2013-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Castilhos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3525 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, V.M., Enzweiler, H. & Castilhos, F. Evaluation of post synthesis treatments over commercial ZSM-5 zeolite in the reaction route of oleic acid esterification with methyl acetate. Reac Kinet Mech Cat 132, 1095–1118 (2021). https://doi.org/10.1007/s11144-021-01957-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01957-2

Keywords

Navigation