Skip to main content
Log in

Kinetic modeling of gas-phase disproportionation and transalkylation of C9 and C10 aromatics over industrial zeolite catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The main aim of this research is to develop a comprehensive reaction network and kinetic model to simulate the disproportionation and transalkylation of mixed C9 and C10 aromatics on the commercial HLD-001+ zeolite catalyst based on the designed experiments in an industrial tubular reactor. The experiments are conducted over the temperature range 315–345 °C and hydrogen to hydrocarbon ratio 4.4–5.5. The proposed reaction pathway consists of 12 reversible reactions including transalkylation, disproportionation, and hydrodealkylation, and 10 main components. In this regard, the industrial reactor is modeled heterogeneously based on the mass and energy balance equations applying the proposed kinetic model at steady state condition. To determine the kinetic parameters, an optimization problem is formulated considering the absolute relative error between the simulation results and plant data as the objective function. The formulated optimization problem is handled by the genetic algorithm as a powerful method in global optimization and the kinetic parameters are determined. The simulation results show that the absolute relative error of training and prediction are 3.09% and 3.13%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ac:

Cross-section area (m2)

av :

Specific surface area (m2 m3)

C:

Concentration (kmol m3)

Cp :

Specific heat capacity (kJ kmol1 K1)

Dim :

Diffusivity of component i in the gas mixture (m2 s1)

dp:

Particle diameter (m)

Ei :

The activation energy of reaction (kJ kmol1)

EB:

Ethylbenzene

hf :

Heat transfer coefficient (W m2 K1)

K:

Thermal conductivity (W m1 s1)

Keq :

Equilibrium constant

ki :

The rate constant of reaction (m3 kg1 s1)

kgi :

Mass transfer coefficient (m s1)

MEB:

Ethyltoluene

MW :

Molecular weight (kg kmol1)

P:

Pressure (Pa)

PDEB:

Para-diethylbenzene

R:

Gas constant (kJ kmol1 K1)

ri :

Rate of reaction for ith reaction (mol kg1 s1)

T:

Temperature of gas phase (K)

TMB:

Trimethylbenzene

TeMB:

Tetramethylbenzene

ug :

Gas phase velocity (m s−1)

y:

Mole fraction

ε:

The void fraction of bed

μ:

Viscosity (kg m−1 s−1)

υi,j :

Critical volume of component i (m3 mol−1)

ρ:

Density (kg m3)

ΔG:

Gibbs free energy change of the reactions (kJ kmol1)

η:

Effectiveness factor

ϕs :

Sphericity

g:

Gas phase

s:

Solid phase

i:

Component

j:

Reaction number

References

  1. Thakur R, Barman S, Gupta RK (2017) Kinetic investigation in transalkylation of 1,2,4 trimethylbenzene with toluene over rare earth metal-modified large pore zeolite. Chem Eng Commun 204(2):254–264

    Article  CAS  Google Scholar 

  2. Aneke L, Gerritsen L, Vandenberg P, Dejong W (1979) The disproportionation of toluene over a HY/β-AlF3/Cu catalyst1. Preparation and characterization. J Catal 59(1):26–36

    Article  CAS  Google Scholar 

  3. Borgna A, Sepúlveda J, Magni SI, Apesteguía CR (2004) Active sites in the alkylation of toluene with methanol: a study by selective acid–base poisoning. Appl Catal A 276(1–2):207–215. https://doi.org/10.1016/j.apcata.2004.08.007

    Article  CAS  Google Scholar 

  4. Almulla FM, Ali SA, Aldossary MR, Alnaimi EI, BinJumah A, Garforth AA (2020) Transalkylation of 1, 2, 4-trimethylbenzene with toluene over large pore zeolites: role of pore structure and acidity. Appl. Catal. A 608:117886–117893

    Article  CAS  Google Scholar 

  5. Wang I, Tsai TC, Huang ST (1990) Disproportionation of toluene and of trimethylbenzene and their transalkylation over zeolite beta. Ind Eng Chem Res 29(10):2005–2012

    Article  CAS  Google Scholar 

  6. Marshall N (1989) Petrochemical processes: technical and economic characteristics. Gulf Publishing, Houston

    Google Scholar 

  7. Han S, Shihabi D, Absil RP, Huang Y, Leiby S, Marler D, McWilliams J (1989) ZSM-5 catalyst developed for toluene disproportionation. Oil Gas J 87:34–43

    Google Scholar 

  8. Tsai T-C, Liu S-B, Wang I (2009) Metal supported zeolite for heavy aromatics transalkylation process. Catal Surv Asia 13:94–103

    Article  CAS  Google Scholar 

  9. Čejka J, Wichterlová B (2002) Acid-catalyzed synthesis of mono-and dialkyl benzenes over zeolites: active sites, zeolite topology, and reaction mechanisms. Catal Rev 44(3):375–421. https://doi.org/10.1081/CR-120005741

    Article  Google Scholar 

  10. Krejčí A, Al-Khattaf S, Ali MA, Bejblová M, Čejka J (2010) Transalkylation of toluene with trimethylbenzenes over large-pore zeolites. Appl Catal A 377(1–2):99–106

    Article  Google Scholar 

  11. Ali SA, Ogunronbi KE, Al-Khattaf SS (2013) Kinetics of dealkylation–transalkylation of C9 alkyl-aromatics over zeolites of different structures. Chem Eng Res Des 91(12):2601–2616

    Article  CAS  Google Scholar 

  12. Xu O, Su H, Ji J, Jin X, Chu J (2007) Kinetic model and simulation analysis for toluene disproportionation and C9-aromatics transalkylation. Chin J Chem Eng 15(3):326–332

    Article  CAS  Google Scholar 

  13. Das J, Bhat YS, Halgeri AB (1994) Transalkylation and disproportionation of toluene and C9 aromatics over zeolite beta. Catal Lett 23(1–2):161–168

    Article  CAS  Google Scholar 

  14. Thakur R, Barman S, Gupta RK (2017) Kinetic investigation in transalkylation of 1, 2, 4 trimethylbenzene with toluene over rare earth metal-modified large pore zeolite. Chem Eng Commun 204(2):254–264

    Article  CAS  Google Scholar 

  15. Waziri SM, Aitani AM, Al-Khattaf S (2010) Transformation of toluene and 1,2,4-trimethylbenzene over ZSM-5 and mordenite catalysts: a comprehensive kinetic model with reversibility. Ind Eng Chem Res 49(14):6376–6387

    Article  CAS  Google Scholar 

  16. Shi Q, Gonçalves JC, Ferreira AF, Plaza MG, Rodrigues AE (2018) Xylene isomerization side reactions over beta zeolite: disproportionation and transalkylation of C8 aromatics and toluene. Appl Catal A 562:198–205

    Article  CAS  Google Scholar 

  17. Baojun L, Jiachang L, Jinsong W, Baoqi S, Hongli G, Dejin K (2006) The commercial test of HLD-001 catalyst for toluene disproportionation and transalkylation. Chem React Eng Technol 22(3):271–283

    Google Scholar 

  18. Yaws CL (2015) The yaws handbook of physical properties for hydrocarbons and chemicals: physical properties for more than 54,000 organic and inorganic chemical compounds, coverage for C1 to C100 organics and Ac to Zr inorganics. Gulf Professional Publishing, New York

    Google Scholar 

  19. Fogler HS, Gürmen M (1999) Elements of chemical reaction engineering. Prentice-Hall of India, New Delhi

    Google Scholar 

  20. Poling BE, Prausnitz JM, O’connell JP (2001) The properties of gases and liquids. Mcgraw-Hill, New York

    Google Scholar 

  21. Smith JM (1981) Chemical engineering kinetics. McGraw-Hill, New York

    Google Scholar 

  22. Cussler EL (2009) Diffusion: mass transfer in fluid systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Farsi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 48 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaksar, S.A.N., Farsi, M. & Khaksar, S.A. Kinetic modeling of gas-phase disproportionation and transalkylation of C9 and C10 aromatics over industrial zeolite catalyst. Reac Kinet Mech Cat 132, 1075–1093 (2021). https://doi.org/10.1007/s11144-021-01955-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01955-4

Keywords

Navigation