Skip to main content
Log in

Hydrodesulfurization reactions group kinetics of “vacuum gas oil–deasphalted vacuum residues–heavy coker gasoil” feedstock in the presence of a Ni6–PMonW12-n/γ-Al2O3 catalysts

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The organosulfur compounds of mixed raw materials—vacuum gas oil in a mixture with heavy coking gas oil reactions group kinetic were investigated during hydrotreating at a hydrogen pressure of 5 MPa at various temperatures (360, 390, 420 °C) and LHSV of 0.5, 1.0, 2.0 and 4.0 h−1 in the presence of Ni6–MonW12-n/γ-Al2O3 sulfide catalysts, prepared on the base of phosphoromolybdenum and phosphorotungstenheteropolyacids. The total sulfur content was determined in feed and hydrogenates. A kinetic model describes the process of hydrodesulfurization of vacuum gas oil in hydrotreating on Ni6–MonW12-n/γ-Al2O3 catalysts based on phosphomolybdenum and phosphotungsten heteropolyacides (HPAs) has been selected. The adequacy of the kinetic model of the 2nd order was verified by means of the coefficient of determination and based on the values of the Fisher criterion. The optimal modes of the vacuum distillate hydrotreating process may be selected on the base of obtained data on the kinetics of hydrodesulfurization (HDS) reactions. The kinetic characteristics of the HDS and hydrodearomatization (HDA) reactions of the mixed feed compounds on Ni6–MonW12-n/γ-Al2O3 catalysts based on phosphor–molybdenum and phosphotungsten HPA were determined with the usage of chosen model. The Ni6PMo12/γ-Al2O3 catalyst was most active one in the HDS reaction. The activity of catalyst samples in hydrogenation reactions was investigated. It was shown that the most active sample is Ni6PMo4W8/γ-Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mendoza-Nieto JA, Vera-Vallejo O, Escobar-Alarcón L, Solís-Casados D, Klimova T (2013) Development of new trimetallic NiMoW catalysts supported on SBA-15 for deep hydrodesulfurization. Fuel 110:268–277. https://doi.org/10.1016/j.fuel.2012.07.057

    Article  CAS  Google Scholar 

  2. Mendez FJ, Llanos A, Echeverria M, Jauregui R, Villasana Y, Diaz Y, Liendo-Polanco G, Ramos-Garcia MA, Zoltan T, Brito JL (2013) Mesoporous catalysts based on Keggin-type heteropolyacids supported on MCM-41 and their application in thiophenehydrodesulfurization. Fuel 110:249–258. https://doi.org/10.1016/j.fuel.2012.11.021

    Article  CAS  Google Scholar 

  3. Amaya SL, Alonso-Nunez G, Zepeda TA, Fuentes S, Echavarria A (2014) Effect of the divalent metal and the activation temperature of NiMoW and CoMoW on the dibenzothiophene hydrodesulfurization reaction. Appl Catal B 148–149:221–230. https://doi.org/10.1016/j.apcatb.2013.10.057

    Article  CAS  Google Scholar 

  4. Mogica-Betancourt JC, Lopez-Benitez A, Montiel-Lopez JR, Massin L, Aouine M, Vrinat M, Berhault G, Guevara-Lara A (2014) Interaction effects of nickel polyoxotungstate with the Al2O3–MgO support for application in dibenzothiophene hydrodesulfurization. J Catal 313:9–23. https://doi.org/10.1016/j.jcat.2014.02.009

    Article  CAS  Google Scholar 

  5. Cervantes-Gaxiola ME, Arroyo-Albiter M, Maya-Yescas R, Rico-Cerda JL, Guevara-Lara A, Espino-Valencia J (2012) Synthesis, characterization and catalytic activity during hydrodesulphurization of dibenzothiophene of dibenzothiophene of NiMoW catalysts supported on Al–Ti mixed oxides modified with MgO. Fuel 100:57–65. https://doi.org/10.1016/j.fuel.2011.12.040

    Article  CAS  Google Scholar 

  6. Cruz-Perez AE, Guevara-Lara A, Morales-Ceron JP, Hernandez AA, de los Reyes JA, Massin L, Geantet C, Vrinat M (2011) Ni and W interactions in the oxide and sulfide states on an Al2O3–TiO2 support and their effects on dibenzothiophenehydrodesulfurization. Catal Today 172:203–208. https://doi.org/10.1016/j.cattod.2011.03.027

    Article  CAS  Google Scholar 

  7. de Leon JND, Picquart M, Villarroel M, Vrinat M, Gil Llambias FG, Murrieta F, de los Reyes JA (2010) Effect of gallium as an additive in hydrodesulfurization WS2/γ-Al2O3 catalysts. J Mol Catal A 323:1–6. https://doi.org/10.1016/j.molcata.2010.03.008

    Article  CAS  Google Scholar 

  8. Yin C, Liu H, Zhao L, Liu B, Xue S, Shen N, Liu Y, Li Y, Liu C (2016) Study for the production of ultra-low sulfur gas oils on a highly loaded NiMoW catalyst. Catal Today 259:409–416. https://doi.org/10.1016/j.cattod.2015.04.028

    Article  CAS  Google Scholar 

  9. Lan L, Ge S, Liu K, Hou Y, Bao X (2011) Synthesis of Ni2P promoted trimetallic NiMoW/γ-Al2O3 catalysts for diesel oil hydrotreatment. J Nat Gas Chem 20:117–122. https://doi.org/10.1016/S1003-9953(10)60173-9

    Article  CAS  Google Scholar 

  10. Tao X, Zhou Y, Wei Q, Yu G, Cui Q, Liu J, Liu T (2014) Effect of morphology properties of NiW catalysts on hydrodesulfurization for individual sulfur compounds in fluid catalytic cracking diesel. Fuel Proc Tech 118:200–207. https://doi.org/10.1016/j.fuproc.2013.08.023

    Article  CAS  Google Scholar 

  11. Yu G, Zhou Y, Wei Q, Tao X, Cui Q (2012) A novel method for preparing well dispersed and highly sulfide NiW hydrodenitrogenation catalyst. Catal Commun 23:48–53. https://doi.org/10.1016/j.catcom.2012.03.002

    Article  CAS  Google Scholar 

  12. Huirache-Acuña R, Pawelec B, Rivera-Muñoz EM, Guil-López R, Fierro JLG (2017) Characterization and HDS activity of sulfide Co-Mo-W/SBA-16 catalysts: effects of P addition and Mo/(Mo +W) ratio. Fuel 198:145–158. https://doi.org/10.1016/j.fuel.2016.09.042

    Article  CAS  Google Scholar 

  13. Yi Y, Zhang B, Jin X, Wang L, Williams CT, Xiong G, Su D, Liang C (2011) Unsupported NiMoW sulfide catalysts for hydrodesulfurization of dibenzothiophene by thermal decomposition of thiosalts. J Mol Catal A 351:120–127. https://doi.org/10.1016/j.molcata.2011.09.024

    Article  CAS  Google Scholar 

  14. Obeso-Estrellaa R, Fierro JLG, de León JND, Fuentes S, Alonso-Nuñez G, Lugo-Medina E, PawelecB ZTA (2018) Effect of partial Mo substitution by W on HDS activity using sulfide CoMoW/Al2O3–TiO2 catalysts. Fuel 233:644–657. https://doi.org/10.1016/j.fuel.2018.06.078

    Article  CAS  Google Scholar 

  15. Echeandia S, Arias PL, Barrio VL, Pawelec B, Fierro JLG (2010) Synergy effect in the HDO of phenol over Ni–W catalysts supported on active carbon: effect of tungsten precursors. Appl Catal B 101:1–12. https://doi.org/10.1016/j.apcatb.2010.08.018

    Article  CAS  Google Scholar 

  16. Palcheva R, Spojakina A, Dimitrov L, Jiratova K (2009) 12-Tungstophosphoric heteropolyacid supported on modified SBA-15 as catalyst in HDS of thiophene. Microporous Mesoporous Mater 122:128–134. https://doi.org/10.1016/j.micromeso.2009.02.026

    Article  CAS  Google Scholar 

  17. Wen XD, Zeng T, Teng BT, Zhang FQ, Li YW, Wang J, Jiao H (2006) Hydrogen adsorption on a Mo27S54 cluster: a density functional theory study. J Mol Catal A 249:191–200. https://doi.org/10.1016/j.molcata.2006.01.018

    Article  CAS  Google Scholar 

  18. Zhang BS, Yi YJ, Zhang W, Liang CH, Su DS (2011) Electron microscopy investigation of the microstructure of unsupported Ni–Mo–W sulfide. Mater Charact 62:684–690. https://doi.org/10.1016/j.matchar.2011.04.022

    Article  CAS  Google Scholar 

  19. Nikulshina M, Mozhaev A, Lancelot C, Marinova M, Blanchard P, Payen E, Lamonier C, Nikulshin P (2018) MoW synergetic effect supported by HAADF for alumina based catalysts prepared from mixed SiMonW12-nheteropolyacids. Appl Catal B 224:951–959. https://doi.org/10.1016/j.apcatb.2017.11.049

    Article  CAS  Google Scholar 

  20. Amaya SL, Alonso-Nunez G, Cruz-Reyes J, Fuentes S, Echavarria A (2015) Influence of the sulfidation temperature in a NiMoW catalyst derived from layered structure (NH4)Ni2OH(H2O)(MoO4)2. Fuel 139:575–583. https://doi.org/10.1016/j.fuel.2014.09.046

    Article  CAS  Google Scholar 

  21. Yin C, Wang Y, Xue S, Liu H, Li H, Liu C (2016) Influence of sulfidation conditions on morphology and hydrotreating performance of unsupported Ni–Mo–W catalysts. Fuel 175:13–19. https://doi.org/10.1016/j.fuel.2016.02.029

    Article  CAS  Google Scholar 

  22. Mingfeng L, Huifeng L, Feng J, Chu Y, Nie H (2010) The relation between morphology of (Co) MoS2 phases and selective hydrodesulfurization for CoMo catalysts. Catal Today 149:35–39. https://doi.org/10.1016/j.cattod.2009.03.017

    Article  CAS  Google Scholar 

  23. Li D, Nishijima A, Morris DE, Guthrie GD (1999) Activity and structure of hydrotreating Ni, Mo, and Ni–Mo sulfide catalysts supported on γ-Al2O3–USY Zeolite. J Catal 188:111–124. https://doi.org/10.1006/jcat.1999.2663

    Article  CAS  Google Scholar 

  24. Callant M, Holder KA, Grange P, Delmon B (1995) Effect of the H2S and H2 partial pressure on the hydrodenitrogenation (HDN) of aniline and indole over a NiMoP-γAl2O3. Bull Soc Chim Belg 104:245–252. https://doi.org/10.1002/bscb.19951040411

    Article  CAS  Google Scholar 

  25. Xu YD, Shu YY, Liu ST, Huang JS, Guo XX (1995) Interaction between ammonium heptamolybdate and NH4ZSM-5 zeolite: the location of Mo species and the acidity of Mo/HZSM-5. Catal Lett 35:233–243. https://doi.org/10.1007/BF00807179

    Article  CAS  Google Scholar 

  26. Zhang X, Liu Q, Zhang Q, Liu Q, Chen L, Li Y, Wang C, Ma L (2019) Aromatic fuel production from phenolics by catalytic hydrodeoxygenation over novel Mo-based catalyst. Energy Proced 158:984–990. https://doi.org/10.1016/j.egypro.2019.01.240

    Article  CAS  Google Scholar 

  27. Nikitina EA (1962) Heteropolycompounds. Goskhimizdat, Moscow

    Google Scholar 

  28. Guo XM, Song MN, Zhao X, Zhao LF (2016) Effect of fluoride promoter on the catalytic activity of NiWF/Al2O3 for hydrodenitrogenation and hydrodesulfurization of coal tar. J Fuel Chem Technol 44:1326–1333. https://doi.org/10.1016/S1872-5813(16)30056-1

    Article  CAS  Google Scholar 

  29. Garcia-Cruz I, Valencia D, Klimova T, Oliedo-Roa R, Martínez-Magadán JM, Gómez-Balderas R, Illas F (2008) Proton affinity of S-containing aromatic compounds: implications for crude oil hydrodesulfurization. J Mol Catal A 281:79–84. https://doi.org/10.1016/j.molcata.2007.08.031

    Article  CAS  Google Scholar 

  30. Solmanov PS, Maksimov NM, Tomina NN, Zanozina II, Pimerzin AA, Verevkin SP (2020) NiMoW/P-Al2O3 four-component catalysts with different Mo: W molar ratios and P2O5 contents: the effect of the composition and active phase morphology on the catalytic activity. React Kinet Mech Catal 129:253–264. https://doi.org/10.1007/s11144-019-01702-w

    Article  CAS  Google Scholar 

  31. Sergienko SR (1964) High molecular compounds of oil. Chemistry, Moscow

    Google Scholar 

  32. Kazakova LI, Kreyn SE (1978) Physicochemical bases for the petroleum oils production. Chemistry, Moscow

    Google Scholar 

  33. Proskuryakov VA (1995) Chemistry of oil and gas. Chemistry, Saint Petersburg

    Google Scholar 

  34. Tomina NN (2009) Trends of the sulfur compounds and unsaturated hydrocarbons of petroleum fractions transformation in the presence of catalysts based on Mo (W) heteropoly compounds. SamSTU, Samara

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Government of the Russian Federation. Resolution No. 220 dated April 9, 2010 Grant No. 14.Z50.31.0038 dated February 20, 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Maximov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maximov, N.M., Moiseev, A.V., Solmanov, P.S. et al. Hydrodesulfurization reactions group kinetics of “vacuum gas oil–deasphalted vacuum residues–heavy coker gasoil” feedstock in the presence of a Ni6–PMonW12-n/γ-Al2O3 catalysts. Reac Kinet Mech Cat 132, 877–892 (2021). https://doi.org/10.1007/s11144-021-01953-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01953-6

Keywords

Navigation