Skip to main content
Log in

Microwave heating and synthesis method influence in SiO2–ZrO2 mixed oxides preparation and its use as heterogeneous catalyst for biodiesel obtainment

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

ZrO2–SiO2 mixed oxides were obtained by two different methods. The influence of microwave-assisted hydrothermal treatment and the differences of two different synthesis methods were investigated. The obtained materials were characterized by DSC, XRD, SEM and FTIR spectrometry. The N2 adsorption analysis data (BET and BJH) was used for the determination of textural properties of the mixed oxides. The two synthesis methods point out differences in the way Zr is incorporated in the silica matrix. The microwave heating was responsible to change the textural properties but not the crystallinity. Finally, the catalytic activity was tested in the transesterification of soybean oil and esterification of oleic acid, both with methanol. The reaction conversions were measured by H-NMR. None of the samples presented catalytic activity in the transesterification of soy oil with methanol. However, the oleic acid was esterified with methanol at subcritical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jamil F, Al-haj L, Al-muhtaseb AH, Al-hinai MA, Baawain M, Rashid U et al (2008) Current scenario of catalysts for biodiesel production: a critical review. Rev Chem Eng. https://doi.org/10.1515/revce-2016-0026

    Article  Google Scholar 

  2. Alaba PA, Sani YM, Daud WMAW (2016) Efficient biodiesel production via solid super acid catalysis: a critical review on recent breakthrough. RSC Adv. https://doi.org/10.1039/C6RA08399D

    Article  Google Scholar 

  3. Mansir N, Taufiq-yap YH, Rashid U, Lokman IM (2017) Investigation of heterogeneous solid acid catalyst performance on low grade feed stocks for biodiesel production: a review. Energy Convers Manage. https://doi.org/10.1016/j.enconman.2016.07.037

    Article  Google Scholar 

  4. Soltani S, Rashid U, Al-resayes SI, Arbi I (2017) Recent progress in synthesis and surface functionalization of mesoporous acidic heterogeneous catalysts for esterification of free fatty acid feedstocks: a review. Energy Convers Manage. https://doi.org/10.1016/j.enconman.2016.07.042

    Article  Google Scholar 

  5. Santos TC, Santos ECS, Dias JP, Barreto J, Stavale FL, Ronconi CM (2009) Reduced graphene oxide as an excellent platform to produce a stable Brønsted acid catalyst for biodiesel production. Fuel. https://doi.org/10.1016/j.fuel.2019.115793

    Article  Google Scholar 

  6. Avhad MR, Marchetti JM (2016) Innovation in solid heterogeneous catalysis for the generation of economically viable and ecofriendly biodiesel: a review. Catal Rev Sci Eng. https://doi.org/10.1080/01614940.2015.1103594

    Article  Google Scholar 

  7. Mardhiah HH, Ong HC, Masjuki HH, Lim S, Lee HV (2017) A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2016.09.036

    Article  Google Scholar 

  8. Saravanan K, Tyagi B, Bajaj HC (2016) Esterification of stearic acid with methanol over mesoporous ordered sulfated ZrO2-SiO2 mixed oxide aerogel catalyst. J Porous Mater. https://doi.org/10.1007/s10934-016-0151-x

    Article  Google Scholar 

  9. Inshina O, Korduban A, Telbiz G, Brei V (2017) Synthesis and study of super acid ZrO2–SiO2–Al2O3 mixed oxide. Adsorpt Sci Technol. https://doi.org/10.1177/0263617417694887

    Article  Google Scholar 

  10. Gervasini A, Messi C, Flahaut D, Guimon C (2009) Acid properties of iron oxide catalysts dispersed on silica – zirconia supports with different Zr content. Appl Catal A. https://doi.org/10.1016/j.apcata.2009.07.044

    Article  Google Scholar 

  11. Debecker DP, Hulea V, Mutin PH (2013) General Mesoporous mixed oxide catalysts via non-hydrolytic sol – gel: a review. Appl Catal A. https://doi.org/10.1016/j.apcata.2012.11.002

    Article  Google Scholar 

  12. Guo X, Zhang Q, Ding X, Shen Q, Wu C, Zhang L et al (2016) Synthesis and application of several sol – gel-derived materials via sol – gel process combining with other technologies: a review. J Sol-Gel Sci Technol. https://doi.org/10.1007/s10971-015-3935-6

    Article  Google Scholar 

  13. Pisal AA, Rao AV (2016) Comparative studies on the physical properties of TEOS, TMOS and Na2SiO3 based silica aerogels by ambient pressure drying method. J Porous Mater. https://doi.org/10.1007/s10934-016-0215-y

    Article  Google Scholar 

  14. Asl SMH, Ghadi A, Baei SM, Javadian H, Maghsudi M, Kazemian H (2018) Porous catalysts fabricated from coal fly ash as cost-effective alternatives for industrial applications: a review. Fuel. https://doi.org/10.1016/j.fuel.2017.12.111

    Article  Google Scholar 

  15. Sander A, Ko MA, Kosir D, Milosavljevi N, Vukovic JP, Magic L (2018) The influence of animal fat type and purification conditions on biodiesel quality. Renew Energy. https://doi.org/10.1016/j.renene.2017.11.068

    Article  Google Scholar 

  16. Bai A, Song H, He G, Li Q, Yang C, Tang L et al (2016) Facile synthesis of core–shell structured ZrO2@SiO2 via a modified Stöber method. Ceram Int. https://doi.org/10.1016/j.ceramint.2016.01.166

    Article  Google Scholar 

  17. Gao H, Zhang Z, Shi Z, Zhang J, Zhi M, Hong Z (2018) Synthesis of high-temperature resistant monolithic zirconia-based aerogel via facile water glass assisted sol–gel method. J Sol-Gel Sci Technol. https://doi.org/10.1007/s10971-017-4571-0

    Article  Google Scholar 

  18. Zhan Z, Zeng HC (1999) A catalyst-free approach for sol-gel synthesis of highly mixed. J Non Cryst Solids 243:26–38

    Article  CAS  Google Scholar 

  19. Shishmakov AB, Mikushina OV, Valova MS, Zhuravlev NA, Petrov LA (2012) Binary ZrO2–SiO2 xerogels: synthesis and properties. Russ J Inorg Chem. https://doi.org/10.1134/S003602361201024X

    Article  Google Scholar 

  20. Aguilar DH, Torres-Gonzalez LC, Torres-Martinez LM, Lopez T, Quintana P (2001) A study of the crystallization of ZrO2 in the sol-gel system: ZrO2-SiO2. J Solid State Chem. https://doi.org/10.1006/jssc.2001.9126

    Article  Google Scholar 

  21. Huang G, Li W, Song Y (2018) Preparation of SiO2–ZrO2 xerogel and its application for the removal of organic dye. J Sol-Gel Sci Technol. https://doi.org/10.1007/s10971-018-4611-4

    Article  Google Scholar 

  22. Choi D, Choy K (2016) Novel nanostructured SiO2/ZrO2 based electrodes with enhanced electrochemical performance for lithium-ion batteries. Electrochim Acta. https://doi.org/10.1016/j.electacta.2016.08.116

    Article  Google Scholar 

  23. Plotnichenko VG, Sokolov VO, Mashinskii VM, Sidorov VA, Guryanov AN, Khopin VF et al (2002) Hydroxyl groups in GeO2 glass. Inorg Mater 38:738–745

    Article  CAS  Google Scholar 

  24. Benito HE, Alamilla RG, Manuel J, Enríquez H, Gutiérrez DL, García P (2015) Porous silicates modified with zirconium oxide and sulfate ions for alcohol dehydration reactions. Adv Mater Sci Eng. https://doi.org/10.1155/2015/325463

    Article  Google Scholar 

  25. Chandradass J, Balasubramanian M, Kim KH (2010) Solution phase synthesis of t-ZrO2 nanoparticles in ZrO2–SiO2 mixed oxide. J Exp Nanosci. https://doi.org/10.1080/17458081003762813

    Article  Google Scholar 

  26. Srinivasan R, Davis BH (1992) Influence of zirconium salt precursors on the crystal structures of zirconia. Catal Lett 14:165–170

    Article  CAS  Google Scholar 

  27. Mascotto S, Tsetsgee O, Mu K, Maccato C, Smarsly B, Brandhuber D et al (2007) Effect of microwave assisted and conventional thermal heating on the evolution of nanostructured inorganic–organic hybrid materials to binary ZrO2–SiO2 oxides. J Mater Chem. https://doi.org/10.1039/b707723h

    Article  Google Scholar 

  28. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-reinoso F, Rouquerol J et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem. https://doi.org/10.1515/pac-2014-1117

    Article  Google Scholar 

  29. Szczodrowski K, Prélot B, Lantenois S, Zajac J, Lindheimer M, Jones D et al (2008) Effect of synthesis conditions on the pore structure and degree of heteroatom insertion in Zr-doped SBA-15 silica-based materials prepared by classical or microwave-assisted hydrothermal treatment. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2007.09.038

    Article  Google Scholar 

  30. Mustu H, Yasyerli S, Yasyerli N, Dogu G, Dogu T, Djinovic P et al (2015) ScienceDirect Effect of synthesis route of mesoporous zirconia based Ni catalysts on coke minimization in conversion of biogas to synthesis gas. Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2015.01.023

    Article  Google Scholar 

  31. Rodríguez Avendaño RG, De Los Reyes JA, Viveros T, Montoya De La Fuente JÁ (2009) Synthesis and characterization of mesoporous materials: silica–zirconia and silica–titania. Catal Today. https://doi.org/10.1016/j.cattod.2009.07.097

    Article  Google Scholar 

  32. Bachari K, Chebout R, Guerroudj RM, Lamouchi M (2012) Preparation and characterization of Zr-MCM-41 synthesized under microwave irradiation condition for acetylation of 1, 2-dimethoxybenzene with acetic anhydride. Res Chem Intermed. https://doi.org/10.1007/s11164-011-0353-4

    Article  Google Scholar 

  33. Védrini JC (2017) Heterogeneous catalysis on metal oxides. Catalysts. https://doi.org/10.3390/catal7110341

    Article  Google Scholar 

  34. Faria EA, Dias IM, Suarez PAZ, Prado AGS (2009) Nanosized and reusable SiO2/ZrO2 catalyst for highly efficient biodiesel production by soybean transesterification. J Braz Chem Soc 20:1732–1737

    Article  CAS  Google Scholar 

  35. Reyna-villanueva LR, Dias JM, Medellín-castillo NA, Ocampo-pérez R, Martínez-Rosales JM, Peñaflor-Galind T et al (2019) Biodiesel production using layered double hidroxides and derived mixed oxides: the role of the synthesis conditions and the catalysts properties on biodiesel conversion. Fuel. https://doi.org/10.1016/j.fuel.2019.03.128

    Article  Google Scholar 

  36. Anderson JA, Fergusson C, Rodrfguez-Ramos I, Guerrero-Ruiz A (2000) Influence of Si/Zr ratio on the formation of surface acidity in silica-zirconia aerogels. J Catal. https://doi.org/10.1006/jcat.2000.2850

    Article  Google Scholar 

  37. Zhuravlev LT (2000) The surface chemistry of amorphous silica: zhuravlev model. Colloids Surf A 173:1–38

    Article  CAS  Google Scholar 

  38. Gupta P, Paul S (2014) Solid acids: green alternatives for acid catalysis. Catal Today. https://doi.org/10.1016/j.cattod.2014.04.010

    Article  Google Scholar 

  39. Guo F, Fang Z, Xu CC, Smith RL Jr (2012) Solid acid mediated hydrolysis of biomass for producing biofuels. Prog Energy Combust Sci. https://doi.org/10.1016/j.pecs.2012.04.001

    Article  Google Scholar 

  40. Fan M, Si Z, Sun W, Zhang P (2019) Sulfonated ZrO2 -TiO2 nanorods as efficient solid acid catalysts for heterogeneous esterification of palmitic acid. Fuel. https://doi.org/10.1016/j.fuel.2019.04.121

    Article  Google Scholar 

  41. Lee D, Lee K (2014) Heterogeneous solid acid catalysts for esterification of free fatty acids. Catal Surv Asia. https://doi.org/10.1007/s10563-014-9166-y

    Article  Google Scholar 

  42. Ferrini P, Dijkmans J, De CR, Van De VS, Dusselier M, Jacobs PA et al (2017) Lewis acid catalysis on single site Sn centers incorporated into silica hosts. Coord Chem Rev. https://doi.org/10.1016/j.ccr.2017.05.010

    Article  Google Scholar 

  43. Salinas D, Escalona N, Pecchi G, Fierro JLG (2019) Lanthanum oxide behavior in La2O3-Al2O3 and La2O3-ZrO2 catalysts with application in FAME production. Fuel. https://doi.org/10.1016/j.fuel.2019.05.015

    Article  Google Scholar 

  44. Pinto FB, Garcia MAS, Costa JCS, Moura CVR, Abreu WC, Moura EM (2018) Effect of calcination temperature on the application of molybdenum trioxide acid catalyst: screening of substrates for biodiesel production. Fuel. https://doi.org/10.1016/j.fuel.2018.11.025

    Article  Google Scholar 

  45. Sani YM, Daud WMAW, Aziz ARA (2014) General Activity of solid acid catalysts for biodiesel production: a critical review. Appl Catal A-Gen. https://doi.org/10.1016/j.apcata.2013.10.052

    Article  Google Scholar 

  46. Liu F, Huang K, Zheng A, Xiao F, Dai S (2018) Hydrophobic solid acids and their catalytic applications in green and sustainable chemistry. ACS Catal. https://doi.org/10.1021/acscatal.7b03369

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hossain MN, Bhuyan MSUS, Alam AHMA, Seo YC (2018) Biodiesel from hydrolyzed waste cooking oil using a S-ZrO2/SBA-15 super acid catalyst under sub-critical conditions. Energies. https://doi.org/10.3390/en11020299

    Article  Google Scholar 

  48. Chang F, Zhou Q, Pan H, Liu X, Zhang H, Xue W et al (2014) Solid mixed-metal-oxide catalysts for biodiesel production: a review. Energy Technol. https://doi.org/10.1002/ente.201402089

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Research Council – CNPq for the funding and the Center of Research and Product Development of Lutheran University of Brazil for the H-NMR analysis.

Funding

National Research Council – CNPq. Conselho Nacional de Desenvolvimento Científico e Tecnológico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Vitor Braun.

Ethics declarations

Conflict of interest

The authors declare have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braun, J.V., Santos, S.J., da Costa Espíndola, G. et al. Microwave heating and synthesis method influence in SiO2–ZrO2 mixed oxides preparation and its use as heterogeneous catalyst for biodiesel obtainment. Reac Kinet Mech Cat 132, 921–934 (2021). https://doi.org/10.1007/s11144-021-01950-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01950-9

Keywords

Navigation