Skip to main content
Log in

Shrimp shell supported palladium complex: an environmentally friendly catalyst for Heck coupling reactions

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A novel shrimp shell supported palladium complex is prepared through simple processes. The new complex is well characterized through ICP, FT-IR spectra, XRD, XPS, SEM, EDX, EDS. This complex is applied as the catalyst for Heck coupling reactions between alkenes and aryl halides, and performed high catalytic activity in water as solvent under mild conditions. The cyclic utilization test revealed a stability and sustainability of this catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Crisp GT (1998) Variations on a theme-recent developments on the mechanism of the Heck reaction and their implications for synthesis. Chem Soc Rev 27:427–436

    Article  CAS  Google Scholar 

  2. Beletskaya IP, Cheprakov AV (2000) The Heck reaction as a sharpening stone of palladium catalysis. Chem Rev 100:3009–3066

    Article  CAS  Google Scholar 

  3. Littke AF, Fu GC (2001) A versatile catalyst for heck reactions of aryl chlorides and aryl bromides under mild conditions. J Am Chem Soc 123:6989–7000

    Article  CAS  Google Scholar 

  4. Heck RF, Breslow DS (1961) The reaction of cobalt hydrotetracarbonyl with olefins. J Am Chem Soc 83:4023–4027

    Article  Google Scholar 

  5. Heck RF (1968) Acylation, methylation, and carboxyalkylation of olefins by Group VIII metal derivatives. J Am Chem Soc 90:5518–5526

    Article  CAS  Google Scholar 

  6. Heck RF, Nolley JP (1972) Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J Org Chem 37:2320–2322

    Article  CAS  Google Scholar 

  7. Schoenberg A, Bartoletti I, Heck RF (1974) Palladium-catalyzed carboalkoxylation of aryl, benzyl, and vinylic halides. J Org Chem 39:3318–3326

    Article  CAS  Google Scholar 

  8. Schoenberg A, Heck RF (1974) Palladium-catalyzed formylation of aryl, heterocyclic, and vinylic halides. J Am Chem Soc 96:7761–7764

    Article  CAS  Google Scholar 

  9. Benaglia M, Puglisi A, Cozzi F (2003) Polymer-supported organic catalysts. Chem Rev 103:3401–3429

    Article  CAS  Google Scholar 

  10. Sonogashira K (2002) Development of Pd-Cu catalyzed cross-coupling of terminal acetylenes with sp2-carbon halides. J Organomet Chem 653:46–49

    Article  CAS  Google Scholar 

  11. Caló V, Nacci A, Monopoli A (2003) Pd nanoparticles catalyzed stereospecific synthesis of β-aryl cinnamic esters in ionic liquids. J Org Chem 68:2929–2933

    Article  Google Scholar 

  12. Zheng HJ, Zhu YG, Shi Y (2014) Palladium(0)-catalyzed heck reaction/c-h activation/amination sequence with diaziridinone: a facile approach to indolines. Angew Chem Int Ed 53:11280–11284

    Article  CAS  Google Scholar 

  13. David E, Lejeune J, Rostaing SP (2008) Synthesis of fluorescent rhodamine dyes using an extension of the Heck reaction. Tetrahedron Lett 49:1860–1864

    Article  CAS  Google Scholar 

  14. Torborg C, Beller M (2009) Recent applications of palladium-catalyzed coupling reactions in the pharmaceutical, agrochemical, and fine chemical industries. Adv Synth Catal 351:3027–3043

    Article  CAS  Google Scholar 

  15. Ohff M, Ohff A, van der Boom ME (1997) Highly active Pd(ii) PCP-type catalysts for the Heck reaction. J Am Chem Soc 119:11687–11688

    Article  CAS  Google Scholar 

  16. Littke AF, Fu GC (1999) Heck reactions in the presence of P(t-Bu)3: expanded scope and Milder reaction conditions for the coupling of aryl chlorides. J Org Chem 64:10–11

    Article  CAS  Google Scholar 

  17. Feuerstein M, Doucet H, Santelli M (2001) Efficient Heck vinylation of aryl halides catalyzed by a new air-stable palladium-tetraphosphine complex. J Org Chem 66:5923–5925

    Article  CAS  Google Scholar 

  18. Hu J, Lu Y, Li Y (2013) Highly active catalysts of bisphosphine oxides for asymmetric Heck reaction. Chem Commun 49:9425–9427

    Article  CAS  Google Scholar 

  19. Hagiwara H, Shimizu Y, Hoshi T (2001) Heterogeneous Heck reaction catalyzed by Pd/C in ionic liquid. Tetrahedron Lett 42:4349–4351

    Article  CAS  Google Scholar 

  20. Serp P, Corrias M, Kalck P (2003) Carbon nanotubes and nanofibers in catalysis. Appl Catal A 253:337–358

    Article  CAS  Google Scholar 

  21. Varma RS (2002) Clay and clay-supported reagents in organic synthesis. Tetrahedron 58:1235–1255

    Article  CAS  Google Scholar 

  22. Choudary BM, Sarma RM, Rao KK (1992) A highly active and stereoselective montmorillonite catalyst for arylation of conjugated alkenes. Tetrahedron 48:719–726

    Article  CAS  Google Scholar 

  23. Mehnert CP, Weaver DW, Ying JY (1998) Heterogeneous Heck catalysis with palladium-grafted molecular sieves. J Am Chem Soc 120:12289–12296

    Article  CAS  Google Scholar 

  24. Ma X, Zhou Y, Zhang J (2008) Solvent-free Heck reaction catalyzed by a recyclable Pd catalyst supported on SBA-15 via an ionic liquid. Green Chem 10:59–66

    Article  CAS  Google Scholar 

  25. Djakovitch L, Koehler K (2001) Heck reaction catalyzed by Pd-modified zeolites. J Am Chem Soc 123:5990–5999

    Article  CAS  Google Scholar 

  26. Yang JH, Wang DF, Liu WD, Zhang X (2013) Palladium supported on a magnetic microgel: an efficient and recyclable catalyst for Suzuki and Heck reactions in water. Green Chem 15:3429–3437

    Article  CAS  Google Scholar 

  27. Wu S, Ma HC, Jia XJ, Zhong TM, Lei ZQ (2011) Biopolymer-metal complex wool-Pd as a highly active heterogeneous catalyst for Heck reaction in aqueous media. Tetrahedron 67:250–256

    Article  CAS  Google Scholar 

  28. Yang QL, Quan ZJ, Wu S, Lei ZQ, Wang XC (2015) Wool-anchored Pd(OAc)2 complex: a highly active and reusable catalyst for desulfurative coupling reactions. Catal Sci Technol 5:4522–4531

    Article  CAS  Google Scholar 

  29. Yang QL, Quan ZJ, Wu S, Lei ZQ, Wang XC (2015) C-C/C-N cross-coupling reactions of aryl sulfonates catalyzed by an eco-friendly andreusable heterogeneous catalyst: wool-Pd complex. RSC Adv 5:59770–59779

    Article  CAS  Google Scholar 

  30. Yang QL, Wu S, Quan ZJ, Lei ZQ, Wang XC (2015) Reusable biomacromolecule-Pd complex catalyzed C-C cross-coupling reactions via C-S cleavage of disulfides. Tetrahedron 71:8462–8471

    Article  CAS  Google Scholar 

  31. Zhan HY, Zhou RR, Yang QL, Wu S (2019) Palygorskite-anchored Pd complexes catalyze the coupling reactions of pyrimidin-2-yl sulfonates. RSC Adv 9:30526–30533

    Article  CAS  Google Scholar 

  32. Yang QL, Wu HL, Wu S (2020) Attapulgite-anchored Pd complex catalyst: a highly active and reusable catalyst for C-C coupling reactions. Reac Kinet Mech Cat 129:283–295

    Article  CAS  Google Scholar 

  33. Rødde RH, Einbu A, Vårum KM (2008) A seasonal study of the chemical composition and chitin quality of shrimp shells obtained from northern shrimp (Pandalus borealis). Carbohyd Polym 71:388–393

    Article  Google Scholar 

  34. Tolesa LD, Gupta BS, Lee MJ (2019) Chitin and chitosan production from shrimp shells using ammonium-based ionic liquids. Int J Biol Macromol 130:818–826

    Article  CAS  Google Scholar 

  35. Si WJ, Zhou J, Zhang SM, Li SJ, Xing W, Zhuo SP (2013) Tunable N-doped or dual N, S-doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications. Electrochim Acta 107:397–405

    Article  CAS  Google Scholar 

  36. Yang Z, Yao Z, Li G, Fang GY, Nie HG, Liu Z, Zhou XM (2012) Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6:205–211

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Natural Science Foundation of Gansu Province (No. 20JR5RA480), the University Innovation Fund project of Gansu Province (No. 2020A-158), the project of cultivating higher education teaching achievements in Gansu Province (No. 2020GSJXCGPY-202), serves local scientific research projects of Lanzhou University of Arts and Sciences (No. 2019FWDF01), the project on teaching reform of Innovative Entrepreneurship Education in Lanzhou University of Arts and Sciences (No. 2020-02), the construction of the first class offline courses in Lanzhou University of Arts and Sciences (No. 2020-03), National Innovation and Entrepreneurship Program for University students, Innovation and Entrepreneurship Program for University students in Gansu Province (No. 202011562005S, 202011562006S, S202011562034, S202011562035), Innovation and Entrepreneurship Training Program in Lanzhou University of Arts and Sciences (No. 2020-17, 2020-18, 2020-25, 2020-26) and National Natural Science Foundation of China (No. 21962017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanlu Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 21832 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Chen, J., Ding, N. et al. Shrimp shell supported palladium complex: an environmentally friendly catalyst for Heck coupling reactions. Reac Kinet Mech Cat 132, 1047–1056 (2021). https://doi.org/10.1007/s11144-021-01942-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01942-9

Keywords

Navigation