Skip to main content
Log in

Kinetic Modeling of Ethylene Oligomerization to High-Chain-Length Olefins Over Al-SBA-15-Supported Ni Catalyst with LiAlH4 Co-catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Kinetic modeling of ethylene oligomerization was performed; an Al-SBA-15-supported Ni catalyst and LiAlH4 co-catalyst were used to produce high-chain-length olefins in a one-pot reaction. A semi-batch slurry reactor produced kinetic data at different feed flow rates and temperatures. Grouping of the kinetic and mass transfer coefficients concerning the products was introduced to estimate undetermined parameters with limited experimental data. Among the four combinatorial cases, the estimation of individual kinetic parameters and grouped mass transfer coefficients showed the lowest errors and Akaike’s information criteria. The activation energies for the formation of hexene and octene were determined to be approximately 15 and 45 kJ/mol, respectively, confirming reported values of 23.1–64.1 kJ/mol. The model showed that the formation of short-chain-length olefins accounted for the rate-determining steps, and the evaluation for the effects of operating conditions guided optimal operation; high temperature and feed flow rate maximized heavy species production, and the flow rate should be optimized to maximize light olefin production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Britovsek GJ, Malinowski R, McGuinness DS, Nobbs JD, Tomov AK, Wadsley AW, Young CT (2015) Ethylene oligomerization beyond Schulz-Flory distributions. ACS Catal 5(11):6922–6925

    Article  CAS  Google Scholar 

  2. Keim W (2013) Oligomerization of ethylene to α-olefins: discovery and development of the shell higher olefin process (SHOP). Angew Chem Int Ed 52(48):12492–12496

    Article  CAS  Google Scholar 

  3. McGuinness DS, Suttil JA, Gardiner MG, Davies NW (2008) Ethylene oligomerization with Cr−NHC catalysts: further insights into the extended metallacycle mechanism of chain growth. Organometallics 27(16):4238–4247

    Article  CAS  Google Scholar 

  4. Overett MJ, Blann K, Bollmann A, Dixon JT, Haasbroek D, Killian E, Maumela H, McGuinness DS, Morgan DH (2005) Mechanistic investigations of the ethylene tetramerisation reaction. J Am Chem Soc 127(30):10723–10730

    Article  CAS  Google Scholar 

  5. Skupinska J (1991) Oligomerization of. alpha.-olefins to higher oligomers. Chem Rev 91(4):613–648

  6. Belov G, Matkovsky P (2010) Processes for the production of higher linear α-olefins. Pet Chem 50:283–289. https://doi.org/10.1134/S0965544110040055

    Article  Google Scholar 

  7. Anastas PT, Kirchhoff MM, Williamson TC (2001) Catalysis as a foundational pillar of green chemistry. Appl Catal A 221(1):3–13. https://doi.org/10.1016/S0926-860X(01)00793-1

    Article  CAS  Google Scholar 

  8. Kimura K, A-I H, Ozaki A (1970) Tracer study of ethylene dimerization over nickel oxide-silica catalyst. J Catal 18 (3):271–280. https://doi.org/https://doi.org/10.1016/0021-9517(70)90322-2

  9. Andrei RD, Popa MI, Fajula F, Hulea V (2015) Heterogeneous oligomerization of ethylene over highly active and stable Ni-AlSBA-15 mesoporous catalysts. J Catal 323:76–84

    Article  CAS  Google Scholar 

  10. Finiels A, Fajula F, Hulea V (2014) Nickel-based solid catalysts for ethylene oligomerization–a review. Catal Sci Technol 4(8):2412–2426

    Article  CAS  Google Scholar 

  11. Heydenrych MD, Nicolaides CP, Scurrell MS (2001) Oligomerization of ethene in a slurry reactor using a nickel (II)-exchanged silica–alumina catalyst. J Catal 197(1):49–57

    Article  CAS  Google Scholar 

  12. Moussa S, Arribas MA, Concepción P, Martínez A (2016) Heterogeneous oligomerization of ethylene to liquids on bifunctional Ni-based catalysts: the influence of support properties on nickel speciation and catalytic performance. Catal Today 277:78–88

    Article  CAS  Google Scholar 

  13. Kuhlmann S, Paetz C, Hägele C, Blann K, Walsh R, Dixon JT, Scholz J, Haumann M, Wasserscheid P (2009) Chromium catalyzed tetramerization of ethylene in a continuous tube reactor—Proof of concept and kinetic aspects. J Catal 262(1):83–91. https://doi.org/10.1016/j.jcat.2008.12.004

    Article  CAS  Google Scholar 

  14. Wöhl A, Müller W, Peulecke N, Müller BH, Peitz S, Heller D, Rosenthal U (2009) Reaction kinetics of the ethene tetramerization catalyst system CrCl3(THF)3, Ph2PN(iPr)PPh2 and MAO: the unexpected and unusual formation of odd-numbered 1-olefins. J Mol Catal A 297(1):1–8. https://doi.org/10.1016/j.molcata.2008.09.026

    Article  CAS  Google Scholar 

  15. Borges P, Pinto RR, Lemos MANDA, Lemos F, Védrine JC, Derouane EG, Ribeiro FR (2007) Light olefin transformation over ZSM-5 zeolites: a kinetic model for olefin consumption. Appl Catal A 324:20–29. https://doi.org/10.1016/j.apcata.2007.02.051

    Article  CAS  Google Scholar 

  16. Zhou H, Wang Y, Wei F, Wang D, Wang Z (2008) Kinetics of the reactions of the light alkenes over SAPO-34. Appl Catal A 348(1):135–141. https://doi.org/10.1016/j.apcata.2008.06.033

    Article  CAS  Google Scholar 

  17. Oliveira P, Borges P, Pinto RR, Lemos MANDA, Lemos F, Védrine JC, Ribeiro FR (2010) Light olefin transformation over ZSM-5 zeolites with different acid strengths—a kinetic model. Appl Catal A 384(1):177–185. https://doi.org/10.1016/j.apcata.2010.06.032

    Article  CAS  Google Scholar 

  18. Toch K, Thybaut JW, Marin GB (2015) Ethene oligomerization on Ni-SiO2-Al2O3: experimental investigation and single-event microkinetic modeling. Appl Catal A 489:292–304. https://doi.org/10.1016/j.apcata.2014.10.036

    Article  CAS  Google Scholar 

  19. Christian Ahoba-Sam MWE, Olsbye Unni (2019) Ethene and butene oligomerization over isostructural H-SAPO-5 and H-SSZ-24: Kinetics and mechanism. Chin J Catal 40(11):1766–1777

    Article  Google Scholar 

  20. Wang C, Wang L, Wu G, Jin F, Zhan X, Ding Y (2020) Quantitative relationship between activity and acid site distribution in the oligomerization of ethylene over MCM-41 Catalyst. Catal Lett 150(2):429–437. https://doi.org/10.1007/s10562-019-02938-w

    Article  CAS  Google Scholar 

  21. Joshi R, Saxena A, Gounder R (2020) Mechanistic insights into alkene chain growth reactions catalyzed by nickel active sites on ordered microporous and mesoporous supports. Catal Sci Technol 10(21):7101–7123. https://doi.org/10.1039/D0CY01186J

    Article  CAS  Google Scholar 

  22. Scholz J, Hager V, Wang X, Kohler FTU, Sternberg M, Haumann M, Szesni N, Meyer K, Wasserscheid P (2014) Ethylene to 2-butene in a continuous gas phase reaction using SILP-type cationic nickel catalysts. ChemCatChem 6(1):162–169. https://doi.org/10.1002/cctc.201300636

    Article  CAS  Google Scholar 

  23. Lallemand M, Finiels A, Fajula F, Hulea V (2011) Continuous stirred tank reactor for ethylene oligomerization catalyzed by NiMCM-41. Chem Eng J 172(2):1078–1082. https://doi.org/10.1016/j.cej.2011.06.064

    Article  CAS  Google Scholar 

  24. Belov G, Matkovsky P (2010) Processes for the production of higher linear α-olefins. Pet Chem 50(4):283–289

    Article  Google Scholar 

  25. Forestière A, Olivier-Bourbigou H, Saussine L (2009) Oligomerization of monoolefins by homogeneous catalysts. Oil Gas Sci Technol 64(6):649–667

    Article  Google Scholar 

  26. Cadenas M, Bringué R, Fité C, Ramírez E, Cunill F (2011) Liquid-phase oligomerization of 1-hexene catalyzed by macroporous ion-exchange resins. Top Catal 54(13):998. https://doi.org/10.1007/s11244-011-9721-y

    Article  CAS  Google Scholar 

  27. Bringué R, Cadenas M, Fité C, Iborra M, Cunill F (2012) Study of the oligomerization of 1-octene catalyzed by macroreticular ion-exchange resins. Chem Eng J 207–208:226–234. https://doi.org/10.1016/j.cej.2012.06.089

    Article  CAS  Google Scholar 

  28. Shin M, Jeong H, Park M-J, Suh Y-W (2020) Benefits of the SiO2-supported nickel phosphide catalyst on ethylene oligomerization. Appl Catal A 591:117376

    Article  CAS  Google Scholar 

  29. Luan Z, Hartmann M, Zhao D, Zhou W, Kevan L (1999) Alumination and ion exchange of mesoporous SBA-15 molecular sieves. Chem Mater 11(6):1621–1627

    Article  CAS  Google Scholar 

  30. Shin M, Suh YW (2020) Ethylene oligomerization over SiO2–Al2O3 supported Ni2P catalyst. ChemCatChem 12(1):135–140

    Article  Google Scholar 

  31. Kwack S-H, Park M-J, Bae JW, Park S-J, Ha K-S, Jun K-W (2011) Modeling a slurry CSTR with Co/P–Al2O3 catalyst for Fischer-Tropsch synthesis. Fuel Process Technol 92(12):2264–2271. https://doi.org/10.1016/j.fuproc.2011.07.019

    Article  CAS  Google Scholar 

  32. Maretto C, Krishna R (1999) Modelling of a bubble column slurry reactor for Fischer-Tropsch synthesis. Catal Today 52(2):279–289. https://doi.org/10.1016/S0920-5861(99)00082-6

    Article  CAS  Google Scholar 

  33. Yu H, Tan Z (2012) New correlations of volumetric liquid-phase mass transfer coefficients in gas-inducing agitated tank reactors. Int J Chem Reactor Eng. https://doi.org/10.1515/1542-6580.1

    Article  Google Scholar 

  34. Moutafchieva D, Popova D, Dimitrova M, Tchaoushev S (2013) Experimental determination of the volumetric mass transfer coefficient. J Univ Chem Technol Metall 48:351–356

    Google Scholar 

  35. Yawalkar AA, Heesink ABM, Versteeg GF, Pangarkar VG (2002) Gas-liquid mass transfer coefficient in stirred tank reactors. Can J Chem Eng 80:840–848

    Article  CAS  Google Scholar 

  36. Fuller EN, Ensley K, Giddings JC (1969) Diffusion of halogenated hydrocarbons in helium. The effect of structure on collision cross sections. J Phys Chem 73(11):3679–3685. https://doi.org/10.1021/j100845a020

    Article  CAS  Google Scholar 

  37. Fuller EN, Schettler PD, Giddings JC (1966) New method for prediction of binary gas-phase diffusion coefficients. Ind Eng Chem 58(5):18–27

    Article  CAS  Google Scholar 

  38. Ljung L (1999) System Identification: theory for the user, 2nd edn. Prentice Hall, New Jersey

    Google Scholar 

  39. Lente G (2015) Deterministic kinetics in chemistry and systems biology: the dynamics of complex reaction networks. Springer, New York

  40. Hagen H (2006) Determination of kinetic constants for titanium-based ethylene trimerization catalysis. Ind Eng Chem Res 45:3544–3551. https://doi.org/10.1021/ie060133e

    Article  CAS  Google Scholar 

  41. Kuhlmann S, Dixon JT, Haumann M, Morgan DH, Ofili J, Spuhl O, Taccardi N, Wasserscheid P (2006) Influence of elevated temperature and pressure on the chromium-catalysed tetramerisation of ethylene. Adv Synth Catal 348:1200–1206. https://doi.org/10.1002/adsc.200606062

    Article  CAS  Google Scholar 

  42. Walsh R, Morgan DH, Bollmann A, Dixon JT (2006) Reaction kinetics of an ethylene tetramerisation catalyst. Appl Catal A 306:184–191. https://doi.org/10.1016/j.apcata.2006.03.055

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the C1 Gas Refinery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT, Republic of Korea (No. NRF-2018M3D3A1A01055765) and by the Industrial Technological Innovation Program funded by the Ministry of Trade, Industry, and Energy (MOTIE), Republic of Korea (No. KEIT-20012726).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung-June Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, Y., Shin, M., Suh, YW. et al. Kinetic Modeling of Ethylene Oligomerization to High-Chain-Length Olefins Over Al-SBA-15-Supported Ni Catalyst with LiAlH4 Co-catalyst. Reac Kinet Mech Cat 132, 499–511 (2021). https://doi.org/10.1007/s11144-021-01939-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01939-4

Keywords

Navigation