Skip to main content
Log in

Study of the perovskite-type catalysts 40LaNi0.75Fe0.25−X MXO3/SiO2 (M=Ce, Zr) for the dry reforming of methane

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A series of perovskite-type oxide catalysts 40LaNi0.75Fe0.25−xMxO3/SiO2 (M=Ce, Zr) were synthesized by the citrate sol–gel method. The synthesized catalysts were characterized by various techniques such as BET, XRD, TEM, TGA, H2-TPR, FTIR, and Raman spectroscopy. The synthesized catalysts used for the dry reforming of methane (DRM) reaction at temperature 1073 K to produce synthesis gas. The effect of ceria and zirconia promoters on the percent conversion of CH4, CO2, and yield of the product was tested. An optimum ratio of (Fe–Ce) and (Fe–Zr) showed the highest yield and the highest conversion. The study demonstrated that the ceria or zirconia dispersed the excess nickel oxide present in the perovskite catalysts, which increased the conversion (CH4 and CO2), the stability of the catalysts and suppressed the carbon deposition during DRM. The percent yield obtained highest with the catalyst 40LaNi0.75Fe0.15Ce0.10O3/SiO2 and the highest percent conversion with the catalyst 40LaNi0.75Fe0.10Zr0.15O3/SiO2. The carbon formation was absent up to the 6 h of time-on-stream study during the DRM reaction. The catalyst maintained its activity without any deactivation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mesrar F, Kacimi M, Liotta LF, Puleo F, Ziyad M (2018) Syngas production from dry reforming of methane over Ni/perlite catalysts: effect of zirconia and ceria impregnation. Int J Hydrogen Energy 43:17142–17155. https://doi.org/10.1016/j.ijhydene.2018.07.104

    Article  CAS  Google Scholar 

  2. Lovell EC, Horlyck J, Scott J, Amal R (2017) Flame spray pyrolysis silica/ceria-zirconia supports for the carbon dioxide reforming of methane. Appl Catal A 546:47–57. https://doi.org/10.1016/j.apcata.2017.08.002

    Article  CAS  Google Scholar 

  3. Munoz MA, Calvino JJ, Izquierdo JMR, Blanco G, Arias DC, Omil JAP, Garrido JCH, Leal JMG, Cauqui MA, Yeste MP (2017) Highly stable ceria-zirconia-yttria supported Ni catalysts for syngas production by CO2 reforming of methane. Appl Surf Sci 426:864–873. https://doi.org/10.1016/j.apsusc.2017.07.210

    Article  CAS  Google Scholar 

  4. Moretti E, Storaro L, Talon A, Chitsazan S, Garbarino G, Busca G, Finocchio E (2015) Ceria-zirconia based catalysts for ethanol steam reforming. Fuel 153:166–175. https://doi.org/10.1016/j.fuel.2015.02.077

    Article  CAS  Google Scholar 

  5. Cheah SK, Massin L, Aouine M, Steil MC, Fouletier J, Gellin P (2018) Methane steam reforming in water deficient conditions on Ir/Ce0.9Gd0.1O2x catalysts: metal-support interactions and catalytic activity enhancement. Appl Catal B 234:279–289. https://doi.org/10.1016/j.apcatb.2018.04.048

    Article  CAS  Google Scholar 

  6. Stekrova M, Paavoda AR, Karinen R (2018) Hydrogen production by aqueous phase reforming over nickel modified Ce, Zr, and La oxide supports. Catal Today 304:143–152. https://doi.org/10.1016/j.cattod.2017.08.030

    Article  CAS  Google Scholar 

  7. Valderrama G, Goldwasser MR, Navarro CU, Tatibouet JM, Barrault J, Dupeyrat CB, Martinez F (2005) Dry reforming of methane over Ni perovskite type oxides. Catal Today 107–108:785–791. https://doi.org/10.1016/j.cattod.2005.07.010

    Article  CAS  Google Scholar 

  8. Hu YH, Ruckenstein E (1996) An optimum NiO content in the CO2 reforming of CH4 with NiO-MgO solid solution catalysts. Catal Lett 36:145–149

    Article  CAS  Google Scholar 

  9. Slagtern A, Olsbye U, Blom R, Dahl IM, Fjellvag H (1996) In situ XRD characterization of La-Ni-Al-O model catalysts for CO2 Reforming of methane. Appl Catal B 145:375–388. https://doi.org/10.1016/0926-860X(96)00157-3

    Article  CAS  Google Scholar 

  10. Coronado I, Stekrova M, Moreno LG, Reinikainen M, Simell P, Karinen R, Lehtonen J (2017) Aqueous phase reforming of methanol over nickel-based catalysts for hydrogen production. Biomass Bioenerg 106:29–37. https://doi.org/10.1016/j.biombioe.2017.08.018

    Article  CAS  Google Scholar 

  11. Wolfbeisser A, Sophiphun O, Bernardi J, Wittayakun J, Fottinger K, Rupprechter G (2016) Methane dry reforming over ceria-zirconia supported ni catalysts. Catal Today 277:234–245. https://doi.org/10.1016/j.cattod.2016.04.025

    Article  CAS  Google Scholar 

  12. Bartholomew CH (1982) Carbon deposition in steam reforming of methanation. J Catal Rev Sci Eng 24:67–112. https://doi.org/10.1080/03602458208079650

    Article  CAS  Google Scholar 

  13. Shiozaki R, Andersen AG, Hayakawa T, Hamakwa S, Suzuki K, Shimizu M, Takehira K (1997) Sustainable Ni/Ba/TiO3 catalysts for partial oxidation of methane to synthesis gas. Stud Surf Sci Catal 110:701–710. https://doi.org/10.1016/S0167-299(97)81032-4

    Article  CAS  Google Scholar 

  14. Hayakawa T, Suzuki S, Nakamura J, Uchijima T, Hamakawa S, Suzuki K, Shishido T, Takehira K (1999) CO2 reforming of CH4 over Ni/perovskite catalysts prepared by solid phase crystallization method. Appl Catal A 183:273–285

    Article  CAS  Google Scholar 

  15. Ben Hammouda S, Zhao F, Safaei Z, Babu I, Ramasamy DL, Sillanpaa M (2017) Reactivity of novel ceria-perovskite composites CeO2-LaMO3 (M=Cu, Fe) in the catalytic wet peroxidative oxidation of the new emergent pollutant “bisphenol F”: Characterization, kinetic and mechanism studies. Appl Catal B 218:119–136. https://doi.org/10.1016/j.apcatb.2017.06.047

    Article  CAS  Google Scholar 

  16. Shikha P, Kang TS, Randhawa BS (2015) Effect of different synthetic routes on the structural, morphological, and magnetic properties of Ce doped LaFeO3 nanoparticles. J Alloys Compd 625:336–345. https://doi.org/10.1016/j.jallcom.2014.11.074

    Article  CAS  Google Scholar 

  17. Valderrama G, Kiennemann A, Navarro CU, Goldwasser MR (2018) LaNi1xMnxO3 Perovskite-Type Oxides As Catalysts Precursors For Dry Reforming Of Methane. Appl Catal A 565:26–33. https://doi.org/10.1016/j.apcata.2018.07.039

    Article  CAS  Google Scholar 

  18. Kozuka H, Ohbayashi K, Koumoto K (2015) Electronic conduction in La-based perovskite-type oxides. Sci Technol Adv Mater 16:1–16

    Article  CAS  Google Scholar 

  19. Daza CE, Gallego J, Mondragon F, Moreno S, Molina R (2010) High stability of Ce-promoted Ni/Mg-Al catalysts derived from hydrotalcites in dry reforming of methane. Fuel 89:592–603. https://doi.org/10.1016/j.fuel.2009.10010

    Article  CAS  Google Scholar 

  20. Swirk K, Ronning M, Motak M, Grzybek T, Costa PD (2020) Synthesis strategies of Zr-and Y-promoted mixed oxides derived from double-layered hydroxides for syngas production via dry reforming of methane. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.239

    Article  Google Scholar 

  21. Tsoukalou A, Imtiaz Q, Kim SM, Abdala PM, Yoon S, Muller CR (2016) Dry reforming of methane over bimetallic Ni-M/La2O3 (M=Co, Fe): the effect of the rate La2O2CO3 formation and phase stability on the catalytic activity and stability. J Catal 343:208–2014. https://doi.org/10.1016/j,jcat.201603.018

    Article  CAS  Google Scholar 

  22. Atta NF, Galal A, E.H. EI-Ads, L. Pan, G. Zhu. (2016) Perovskite materials-synthesis, characterization, properties and applications. InTech. https://doi.org/10.1016/10.5772/61280

    Article  Google Scholar 

  23. Sagar TV, Sreelatha N, Hannant G, Upendra K, Lingaiah N, Rama Rao KS, Satyanarayana CVV, Reddy IAK, Sai Prasad PS (2014) Methane reforming with carbon dioxide over La-Nix-Ce1x mixed oxide catalysts. Indian J Chem 53A:478–483

    CAS  Google Scholar 

  24. Liu C, Chen D, Ashok J, Hongmanorom P, Wang W, Li T, Wang Z, Kawi S (2020) Chemical looping steam reforming of bio-oil for hydrogen-rich syngas production: effect of doping on LaNi0.8Fe0.2O3 perovskite. Int J Hydrogen Energy 45:21123–21137. https://doi.org/10.1016/j.ijhydene.2020.05.186

    Article  CAS  Google Scholar 

  25. Koubaissy B, Pietraszek A, Roger AC, Kiennemann A (2010) CO2 reforming of methane Ce-Zr-Ni-Me mixed catalysts. Catal Today 157:436–439. https://doi.org/10.1016/j.cattod.2010.01.050

    Article  CAS  Google Scholar 

  26. Das S, Bhattar S, Liu L, Wang Z, Xi S, Spivey JJ, Kawi S (2020) Effect of partial Fe substitution in La0.9Sr0.1NiO3 perovskite-derived catalysts on the reaction mechanism of methane dry reforming. Catalysis 10:12466–12486. https://doi.org/10.1021/acscatal.0c01229

    Article  CAS  Google Scholar 

  27. Silva CKS, Baston EP, Meglar LZ, Bellido JDA (2019) Ni/Al2O3-La2O3 catalysts synthesized by a one-step polymerization method applied to the dry reforming of methane: effect of precursor structures of nickel perovskite and spinel. React Kinet Mech Catal 128:251–269. https://doi.org/10.1007/s11144-019-01644-3

    Article  CAS  Google Scholar 

  28. Yadav PK, Das T (2019) Production of syngas from carbon dioxide reforming of methane by using LaNixFe1xO3 perovskite type catalysts. Int J Hydrogen Energy 44:1659–1670. https://doi.org/10.1016/j.ijhydene.2018.11.108

    Article  CAS  Google Scholar 

  29. Sohn JR, Kim HW, Park MY, Park EH, Kim JT, Park SE (1995) Highly active catalyst of NiO-ZrO2 modified with H2SO4 for ethylene dimerization. Appl Catal A 128:127–141. https://doi.org/10.1016/0926-860X(95)00057-7

    Article  CAS  Google Scholar 

  30. Yi Y, Liu H, Chu B, Qin Z, Dong L, He H, Tang C, Fan M, Bin L (2019) Catalytic removal NO by CO over LaNi0.5M0.5O3 (M=Co, Mn, Cu) perovskite oxide catalysts: tune surface chemical composition to improve N2 selectivity. Chem Eng J 369:511–521. https://doi.org/10.1016/j.cej.2019.03.066

    Article  CAS  Google Scholar 

  31. Khaleed AA, Bello A, Dangbegnon JK, Madito MJ, Ugbo FU, Akande AA, Dhonge BP, Barzegar F, Momodu DY, Mwakikunga BW, Manyala N (2017) Gas sensing study of hydrothermal reflux synthesized NiO/graphene foam electrode for CO sensing. J Mater Sci 52:2035–2044. https://doi.org/10.1007/s10853-016-0491-6

    Article  CAS  Google Scholar 

  32. Reddy GK, Peck TC, Roberts CA (2019) CeO2-MxOy (M=Fe Co, Ni and Cu) Based Oxides For Direct NO decomposition. J Phys Chem 123:28695–28706. https://doi.org/10.1021/acs.jpcc.9b07736

    Article  CAS  Google Scholar 

  33. Li K, Pei C, Li X, Chen S, Zhang X, Liu R, Gong J (2020) Dry reforming of methane over La2O2CO3-modified Ni/Al2O3 catalysts with moderate metal support interaction. Appl Catal B 264:118448–118456. https://doi.org/10.1016/j.apcatb.2019.118448

    Article  CAS  Google Scholar 

  34. Das T, Nah IW, Choi JG, Oh IH (2016) Synthesis of iron oxide catalysts using various methods for the spin conversion of hydrogen. Reac Kinet Mech Catal 118:669–681. https://doi.org/10.1007/s11144-016-1035-4

    Article  CAS  Google Scholar 

  35. Tang C, Sun B, Sun J, Hong X, Deng Y, Gao F, Dong L (2017) Solid state preparation of NiO-CeO2 catalyst for NO reduction. Catal Today 281:575–582. https://doi.org/10.1016/j.cattod.2016.05.026

    Article  CAS  Google Scholar 

  36. Wang N, Liu J, Gu W, Song Y, Wang F (2016) Toward synergy of carbon and La2O3 in their hybrid as an efficient catalyst for the oxygen reduction reaction. R Soc Chem 6:77786–77795. https://doi.org/10.1039/c6ra17104d

    Article  CAS  Google Scholar 

  37. Mondal T, Pant KK, Dalai AK (2015) Oxidative and non-oxidative steam reforming of crude bio-ethanol for hydrogen production over Rh promoted Ni/CeO2-ZrO2 catalyst. Appl Catal A 499:19–31. https://doi.org/10.1016/j.apcata.2015.04.004

    Article  CAS  Google Scholar 

  38. Jbeli R, Boukhachem A, Saadallah F, Alleg S, Amlouk M, Ezzaouia H (2019) Synthesis and physical properties of Fe doped La2O3 thin films grown by spray pyrolysis for photocatalytic applications. Mater Res Express 6:066414–066424. https://doi.org/10.1088/2053-1591/ab0e29

    Article  CAS  Google Scholar 

  39. Mrabet C, Ben AM, Boukhachem A, Amlouk M, Manoubi T (2016) Physical properties of LA-doped NiO sprayed thin films for optoelectronic and sensor applications. Ceram Int 42:5963–5978. https://doi.org/10.1016/j.ceramint.2015.12.144

    Article  CAS  Google Scholar 

  40. Ashok J, Das S, Dewangan N, Kawi S (2019) H2S and NOx tolerance capability of CeO2 doped La1xCexCo0.5Ti0.5O3δ perovskites for steam reforming of biomass tar model reaction. Energy Convers Manag X1:100003–100015. https://doi.org/10.1016/j.ecmx.2019.100003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank for the financial support of SERB, DST (ECR/2016/001424), India, and the SMILE Scheme (SMILE-10/2017) to the Director and SRIC, IIT Roorkee for the instrument support by providing FTIR and Raman spectroscopy.

Author information

Authors and Affiliations

Authors

Contributions

PY: conceptualization, investigation, data correction, formal analysis, writing; TD: project administration, resources, supervision, reviewing, and editing.

Corresponding author

Correspondence to Taraknath Das.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6318 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, P.K., Das, T. Study of the perovskite-type catalysts 40LaNi0.75Fe0.25−X MXO3/SiO2 (M=Ce, Zr) for the dry reforming of methane. Reac Kinet Mech Cat 132, 279–300 (2021). https://doi.org/10.1007/s11144-021-01926-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01926-9

Keywords

Navigation