Skip to main content
Log in

Effect of the cerium modification on acid–base properties of Mg–Al hydrotalcite-derived oxide system and catalytic performance in ethanol conversion

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The prospects of using cerium as a modifying additive of Mg–Al hydrotalcite-derived oxide system have been estimated by low-temperature nitrogen ad(de)sorption, X-ray diffraction, scanning electron microscopy, 1H and 27Al solid-state nuclear magnetic resonance (NMR), X-ray photoelectron and UV–Vis diffuse reflectance spectroscopy techniques. The effect of such tuning of structural-textural characteristics and acid–base properties of the surface on its catalytic performance in ethanol conversion has been studied. Solid-state NMR spectroscopic study of the probe molecule adsorption and temperature-programmed desorption of NH3 and CO2 with mass-spectrometry control are used to determine the nature and strength distribution of acidic and basic sites of Mg–Al(–Ce) oxide systems. It has been found that the selectivity towards 1-butanol up to 68.1% (548 K) is achieved in ethanol conversion over Mg–Al–Ce sample at time-on-stream ≤ 2 h. At higher time-on-stream, the specific rates of the target product (1-butanol) formation are comparable for both modified and un-modified catalysts, but the products distribution differs. Cerium modification of Mg–Al oxide catalyst leads to increase in specific rate of acetaldehyde formation due to increase in the number of basic sites and their surface density. Wherein, the rate of ethanol dehydration products (ethylene and diethyl ether) is reduced, apparently, due to decrease in a number of Lewis acidic sites formed by Al3+ cations octahedrally coordinated to oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gallo JMR, Bueno JMC, Schuchardt U (2014) Catalytic transformations of ethanol for biorefineries. J Braz Chem Soc 25:2229–2243. https://doi.org/10.5935/0103-5053.20140272

    Article  CAS  Google Scholar 

  2. Sun J, Wang Y (2014) Recent advances in catalytic conversion of ethanol to chemicals. ACS Catal 4:1078–1090. https://doi.org/10.1021/cs4011343

    Article  CAS  Google Scholar 

  3. Posada JA, Patel AD, Roes A et al (2013) Potential of bioethanol as a chemical building block for biorefineries: preliminary sustainability assessment of 12 bioethanol-based products. Bioresour Technol 135:490–499. https://doi.org/10.1016/j.biortech.2012.09.058

    Article  CAS  PubMed  Google Scholar 

  4. Guerbet M (1899) Action de l’alcool amylique de fermentation sur son dérivé sodé. Comptes rendus l’Académie des Sci 128:511

    CAS  Google Scholar 

  5. O’Lenick AJ Jr (2001) Guerbet chemistry. J Surfactants Deterg 4:311–315. https://doi.org/10.1007/s11743-001-0185-1

    Article  Google Scholar 

  6. Angelici C, Weckhuysen BM, Bruijnincx PCA (2013) Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals. Chemsuschem 6:1595–1614. https://doi.org/10.1002/cssc.201300214

    Article  CAS  PubMed  Google Scholar 

  7. Ordóñez S, Díaz E, León M, Faba L (2011) Hydrotalcite-derived mixed oxides as catalysts for different C–C bond formation reactions from bioorganic materials. Catal Today 167:71–76. https://doi.org/10.1016/j.cattod.2010.11.056

    Article  CAS  Google Scholar 

  8. Gabriëls D, Hernández WY, Sels B et al (2015) Review of catalytic systems and thermodynamics for the Guerbet condensation reaction and challenges for biomass valorization. Catal Sci Technol 5:3876–3902. https://doi.org/10.1039/C5CY00359H

    Article  CAS  Google Scholar 

  9. Kozlowski JT, Davis RJ (2013) Heterogeneous catalysts for the guerbet coupling of alcohols. ACS Catal 3:1588–1600. https://doi.org/10.1021/cs400292f

    Article  CAS  Google Scholar 

  10. Ramasamy KK, Gray M, Job H et al (2016a) Role of calcination temperature on the hydrotalcite derived MgO-Al2O3 in converting ethanol to butanol. Top Catal 59:46–54. https://doi.org/10.1007/s11244-015-0504-8

    Article  CAS  Google Scholar 

  11. Ramasamy KK, Gray M, Job H et al (2016b) Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds. Catal Today 269:82–87. https://doi.org/10.1016/j.cattod.2015.11.045

    Article  CAS  Google Scholar 

  12. Carvalho DL, de Avillez RR, Rodrigues MT et al (2012) Mg and Al mixed oxides and the synthesis of n-butanol from ethanol. Appl Catal A 415–416:96–100. https://doi.org/10.1016/j.apcata.2011.12.009

    Article  CAS  Google Scholar 

  13. León M, Díaz E, Ordóñez S (2011) Ethanol catalytic condensation over Mg–Al mixed oxides derived from hydrotalcites. Catal Today 164:436–442. https://doi.org/10.1016/j.cattod.2010.10.003

    Article  CAS  Google Scholar 

  14. Carlini C, Marchionna M, Noviello M et al (2005) Guerbet condensation of methanol with n-propanol to isobutyl alcohol over heterogeneous bifunctional catalysts based on Mg-Al mixed oxides partially substituted by different metal components. J Mol Catal A 232:13–20. https://doi.org/10.1016/j.molcata.2004.12.037

    Article  CAS  Google Scholar 

  15. Cota I, Ramírez E, Medina F et al (2010) Highly basic catalysts obtained by intercalation of La-containing anionic complexes in layered double hydroxides. Appl Catal A 382:272–276. https://doi.org/10.1016/j.apcata.2010.05.006

    Article  CAS  Google Scholar 

  16. Wang Z, Fongarland P, Lu G, Essayem N (2014) Reconstructed La-, Y-, Ce-modified MgAl-hydrotalcite as a solid base catalyst for aldol condensation: Investigation of water tolerance. J Catal 318:108–118. https://doi.org/10.1016/j.jcat.2014.07.006

    Article  CAS  Google Scholar 

  17. de Souza RJ, Perrone OM, Siqueira MR et al (2019) Effect of lanthanide ion doping on Mg−Al mixed oxides as active acid−base catalysts for fatty acid ethyl ester synthesis. Renew Energy 133:367–372. https://doi.org/10.1016/j.renene.2018.10.038

    Article  CAS  Google Scholar 

  18. Vlasenko NV, Kyriienko PI, Yanushevska OI et al (2020) The effect of ceria content on the acid-base and catalytic characteristics of ZrO2–CeO2 oxide compositions in the process of ethanol to n-butanol condensation. Catal Lett 150:234–242. https://doi.org/10.1007/s10562-019-02937-x

    Article  CAS  Google Scholar 

  19. Vlasenko NV, Kyriienko PI, Valihura KV et al (2019) Yttria-stabilized zirconia as a high-performance catalyst for ethanol to n—butanol guerbet coupling. ACS Omega 4:21469–21476. https://doi.org/10.1021/acsomega.9b03170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Larina OV, Valihura KV, Kyriienko PI et al (2019) Successive vapour phase Guerbet condensation of ethanol and 1-butanol over Mg–Al oxide catalysts in a flow reactor. Appl Catal A 588:117265. https://doi.org/10.1016/J.APCATA.2019.117265

    Article  Google Scholar 

  21. d’Espinose de Lacaillerie JB, Fretigny C, Massiot D (2008) MAS NMR spectra of quadrupolar nuclei in disordered solids: the Czjzek model. J Magn Reson 192:244–251. https://doi.org/10.1016/j.jmr.2008.03.001

    Article  CAS  PubMed  Google Scholar 

  22. Hosoglu F, Faye J, Mareseanu K et al (2015) High resolution NMR unraveling Cu substitution of Mg in hydrotalcites-ethanol reactivity. Appl Catal A 504:533–541. https://doi.org/10.1016/j.apcata.2014.10.005

    Article  CAS  Google Scholar 

  23. Barama S, Dupeyrat-Batiot C, Capron M et al (2009) Catalytic properties of Rh, Ni, Pd and Ce supported on Al-pillared montmorillonites in dry reforming of methane. Catal Today 141:385–392. https://doi.org/10.1016/j.cattod.2008.06.025

    Article  CAS  Google Scholar 

  24. Scofield SFs - Al X-ray—theoretical calculation—central field potential. The XPS Library. https://xpslibrary.com/sf-table-scofield-theoretical/

  25. Świrk K, Rønning M, Motak M et al (2019) Ce- and Y-modified double-layered hydroxides as catalysts for dry reforming of methane: on the effect of yttrium promotion. Catalysts 9:56. https://doi.org/10.3390/catal9010056

    Article  CAS  Google Scholar 

  26. Das J, Das D, Parida KM (2006) Preparation and characterization of Mg–Al hydrotalcite-like compounds containing cerium. J Colloid Interface Sci 301:569–574. https://doi.org/10.1016/j.jcis.2006.05.014

    Article  CAS  PubMed  Google Scholar 

  27. Aramendía MA, Borau V, Jiménez C et al (2000) XRD and 1H MAS NMR spectroscopic study of mixed oxides obtained by calcination of layered-double hydroxides. Mater Lett 46:309–314. https://doi.org/10.1016/S0167-577X(00)00193-2

    Article  Google Scholar 

  28. Sheng PY, Idriss H (2004) Ethanol reactions over Au–Rh/CeO2 catalysts. Total decomposition and H2 formation. J Vac Sci Technol A 22:1652. https://doi.org/10.1116/1.1705591

    Article  CAS  Google Scholar 

  29. Janssens W, Makshina EV, Vanelderen P et al (2015) Ternary Ag/MgO–SiO2 catalysts for the conversion of ethanol into butadiene. Chemsuschem 8:994–1008. https://doi.org/10.1002/cssc.201402894

    Article  CAS  PubMed  Google Scholar 

  30. Hibino T, Tsunashima A (1997) Formation of spinel from a hydrotalcite-like compound at low temperature: reaction between edges of crystallites. Clays Clay Miner 45:842–853

    Article  CAS  Google Scholar 

  31. Xu Z, Lu G (2005) Hydrothermal synthesis of layered double hydroxides (LDHs) from mixed MgO and Al2O3: LDH formation mechanism. Chem Mater. https://doi.org/10.1021/cm048085g

    Article  Google Scholar 

  32. Kikhtyanin O, Čapek L, Smoláková L et al (2017) Influence of Mg–Al mixed oxide compositions on their properties and performance in aldol condensation. Ind Eng Chem Res 56:13411–13422. https://doi.org/10.1021/acs.iecr.7b03367

    Article  CAS  Google Scholar 

  33. Wang Y, Han XW, Ji A et al (2005) Basicity of potassium-salt modified hydrotalcite studied by1H MAS NMR using pyrrole as a probe molecule. Microporous Mesoporous Mater 77:139–145. https://doi.org/10.1016/j.micromeso.2004.08.024

    Article  CAS  Google Scholar 

  34. Kraus H, Prins R (1996) Proton NMR investigations of surface hydroxyl groups on oxidic Mo–P/γ-al2o3catalysts. J Catal 164:260–267. https://doi.org/10.1006/jcat.1996.0382

    Article  CAS  Google Scholar 

  35. Piedra G, Fitzgerald JJ, Dando N et al (1996) Solid-state 1H NMR studies of aluminum oxide hydroxides and hydroxides. Inorg Chem 35:3474–3478. https://doi.org/10.1021/ic951162c

    Article  CAS  Google Scholar 

  36. Fitzgerald JJ, Piedra G, Dec SF et al (1997) Dehydration studies of a high-surface-area alumina (Pseudo-boehmite) using solid-state 1H and 27Al NMR. J Am Chem Soc 119:7832–7842. https://doi.org/10.1021/ja970788u

    Article  CAS  Google Scholar 

  37. DeCanio EC, Edwards JC, Bruno JW (1994) Solid-state 1H NMR characterization of gamma-alumina and modified gamma-aluminas. J Catal 148:76–83

    Article  CAS  Google Scholar 

  38. Jiang Y, Huang J, Dai W, Hunger M (2011) Solid-state nuclear magnetic resonance investigations of the nature, property, and activity of acid sites on solid catalysts. Solid State Nucl Magn Reson 39:116–141. https://doi.org/10.1016/j.ssnmr.2011.03.007

    Article  CAS  PubMed  Google Scholar 

  39. Lang S, Benz M, Obenaus U et al (2017) Mechanisms of the AlCl3 modification of siliceous microporous and mesoporous catalysts investigated by multi-nuclear solid-state NMR. Top Catal 60:1537–1553. https://doi.org/10.1007/s11244-017-0837-6

    Article  CAS  Google Scholar 

  40. Coenen K, Gallucci F, Mezari B et al (2019) Investigating the role of the different metals in hydrotalcite Mg/Al-based adsorbents and their interaction with acidic sorbate species. Chem Eng Sci 200:138–146. https://doi.org/10.1016/j.ces.2019.01.046

    Article  CAS  Google Scholar 

  41. Paparazzo E (2018) Use and mis-use of x-ray photoemission spectroscopy Ce3d spectra of Ce2O3 and CeO2. J Phys Condens Matter 30:343003. https://doi.org/10.1088/1361-648X/aad248

    Article  PubMed  Google Scholar 

  42. Stetsovych V, Pagliuca F, Dvořák F et al (2013) Epitaxial cubic Ce2O3 films via Ce–CeO2 interfacial reaction. J Phys Chem Lett 4:866–871. https://doi.org/10.1021/jz400187j

    Article  CAS  PubMed  Google Scholar 

  43. Romeo M, Bak K, El FJ et al (1993) XPS study of the reduction of cerium dioxide. Surf Interface Anal 20:508–512

    Article  CAS  Google Scholar 

  44. Skála T, Matolín V (2014) Model thin films of Ce(III)-based mixed oxides. Surf Interface Anal 46:993–996. https://doi.org/10.1002/sia.5458

    Article  CAS  Google Scholar 

  45. Escobar J, Gutiérrez AW, Barrera MC, Colín JA (2016) NiMo/alumina hydrodesulphurization catalyst modified by saccharose: Effect of addition stage of organic modifier. Can J Chem Eng 94:66–74. https://doi.org/10.1002/cjce.22334

    Article  CAS  Google Scholar 

  46. Conte M, Liu X, Murphy DM et al (2012) Cyclohexane oxidation using Au/MgO: an investigation of the reaction mechanism. Phys Chem Chem Phys 14:16279–16285. https://doi.org/10.1039/c2cp43363j

    Article  CAS  PubMed  Google Scholar 

  47. Gu F, Li C, Cao H et al (2008) Crystallinity of Li-doped MgO:Dy3+ nanocrystals via combustion process and their photoluminescence properties. J Alloys Compd 453:361–365. https://doi.org/10.1016/j.jallcom.2006.11.098

    Article  CAS  Google Scholar 

  48. Zou W, Ge C, Lu M et al (2015) Engineering the NiO/CeO2 interface to enhance the catalytic performance for CO oxidation. RSC Adv 5:98335–98343. https://doi.org/10.1039/c5ra20466f

    Article  CAS  Google Scholar 

  49. Guo M, Lu J, Wu Y et al (2011) UV and visible Raman studies of oxygen vacancies in rare-earth-doped ceria. Langmuir 27:3872–3877. https://doi.org/10.1021/la200292f

    Article  CAS  PubMed  Google Scholar 

  50. Vinod Kumar T, Mukherjee D, Subrahmanyam C, Reddy BM (2018) Investigation on the physicochemical properties of Ce0.8Eu0.1M0.1O2-:δ (M = Zr, Hf, La, and Sm) solid solutions towards soot combustion. New J Chem 42:5276–5283. https://doi.org/10.1039/c8nj00007g

    Article  CAS  Google Scholar 

  51. Reddy BM, Bharali P, Saikia P et al (2008) Structural characterization and catalytic activity of nanosized CexM1-xO2 (M = Zr and Hf) mixed oxides. J Phys Chem C 112:11729–11737. https://doi.org/10.1021/jp802674m

    Article  CAS  Google Scholar 

  52. Garbarino G, Wang C, Valsamakis I et al (2017) Acido-basicity of lanthana/alumina catalysts and their activity in ethanol conversion. Appl Catal B 200:458–468. https://doi.org/10.1016/j.apcatb.2016.07.010

    Article  CAS  Google Scholar 

  53. Yan T, Dai W, Wu G et al (2018) Mechanistic insights into one-step catalytic conversion of ethanol to butadiene over bifunctional Zn–Y/beta zeolite. ACS Catal 8:2760–2773. https://doi.org/10.1021/acscatal.8b00014

    Article  CAS  Google Scholar 

  54. Sánchez-Sánchez M, Blasco T (2009) Characterization of zeolite basicity using probe molecules by means of infrared and solid state NMR spectroscopies. Catal Today 143:293–301. https://doi.org/10.1016/j.cattod.2008.12.012

    Article  CAS  Google Scholar 

  55. Zhang W, Xu S, Han X, Bao X (2012) In situ solid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach. Chem Soc Rev 41:192–210. https://doi.org/10.1039/c1cs15009j

    Article  CAS  PubMed  Google Scholar 

  56. Xu J, Wang Q, Li S, Deng F (2019) Solid-state NMR characterization of acid properties of zeolites and solid acid catalysts. Solid-state NMR zeolite catalysis. Springer, Singapore, pp 159–197

    Chapter  Google Scholar 

  57. Lang S, Benz M, Obenaus U et al (2016) Novel approach for the characterization of lewis acidic solid catalysts by solid-state NMR spectroscopy. ChemCatChem 8:2031–2036. https://doi.org/10.1002/cctc.201600372

    Article  CAS  Google Scholar 

  58. Chen L, Zheng A, Deng F et al (2007) Brønsted/lewis acid synergy in dealuminated HY zeolite: a combined solid-state NMR and theoretical calculation study. J Am Chem Soc 129:11161–11171. https://doi.org/10.1021/ja072767y

    Article  CAS  PubMed  Google Scholar 

  59. Dai W, Wang X, Wu G et al (2012) Methanol-to-olefin conversion catalyzed by low-silica AlPO-34 with traces of brønsted acid sites: combined catalytic and spectroscopic investigations. ChemCatChem 4:1428–1435. https://doi.org/10.1002/cctc.201100503

    Article  CAS  Google Scholar 

  60. Sánchez-Sánchez M, Blasco T (2000) Pyrrole as an NMR probe molecule to characterise zeolite basicity. Chem Commun 2:491–492. https://doi.org/10.1039/b000609m

    Article  Google Scholar 

  61. Yi X, Li G, Huang L et al (2017) An NMR scale for measuring the base strength of solid catalysts with pyrrole probe: a combined solid-state NMR experiment and theoretical calculation study. J Phys Chem C 121:3887–3895. https://doi.org/10.1021/acs.jpcc.6b11518

    Article  CAS  Google Scholar 

  62. Sanchez-Sanchez M, Blasco T, Rey F (1999) An NMR study on the adsorption and reactivity of chloroform over alkali exchanged zeolites X and Y. Phys Chem Chem Phys 1:4529–4535. https://doi.org/10.1039/a904717d

    Article  CAS  Google Scholar 

  63. Timonen JT, Pakkanen TT (1999) A qualitative 1H NMR study of CHCl3 adsorption on conjugated acid-base pairs in cation exchanged Y-zeolites. Microporous Mesoporous Mater 30:327–333. https://doi.org/10.1016/S1387-1811(99)00044-X

    Article  CAS  Google Scholar 

  64. Bosch E, Huber S, Weitkamp J, Knözinger H (1999) Adsorption of trichloro- and trifluoromethane in Y-zeolites as studied by IR spectroscopy and multinuclear solid-state NMR. Phys Chem Chem Phys 1:579–584. https://doi.org/10.1039/a808296k

    Article  CAS  Google Scholar 

  65. Huang J, Van Vegten N, Jiang Y et al (2010) Increasing the Brønsted acidity of flame-derived silica/alumina up to zeolitic strength. Angew Chem- Int Ed 49:7776–7781. https://doi.org/10.1002/anie.201003391

    Article  CAS  Google Scholar 

  66. Ma D, Han X, Xie S et al (2002) An investigation of the roles of surface aluminum and acid sites in the zeolite MCM-22. Chemistry A Eur J 8:162–170. https://doi.org/10.1002/1521-3765(20020104)8:1%3c162::AID-CHEM162%3e3.0.CO;2-4

    Article  CAS  Google Scholar 

  67. Jacobs WPJH, De Haan JW, Van De Ven LJM, Van Santen RA (1993) Interaction of NH3 with Brønsted acid sites in different cages of zeolite Y as studied by 1H MAS NMR. J Phys Chem 97:10394–10402. https://doi.org/10.1021/j100142a022

    Article  CAS  Google Scholar 

  68. Scalbert J, Thibault-Starzyk F, Jacquot R et al (2014) Ethanol condensation to butanol at high temperatures over a basic heterogeneous catalyst: how relevant is acetaldehyde self-aldolization? J Catal 311:28–32. https://doi.org/10.1016/j.jcat.2013.11.004

    Article  CAS  Google Scholar 

  69. Khalaf HA (2013) The negative effect of ceria on the propene selectivity for isopropanol decomposition over phosphated and phosphate-free ceria/alumina catalysts. Springerplus 2:1–9. https://doi.org/10.1186/2193-1801-2-619

    Article  CAS  Google Scholar 

  70. Di Cosimo JI, Díez VK, Xu M et al (1998) Structure and surface and catalytic properties of Mg-Al basic oxides. J Catal 178:499–510

    Article  Google Scholar 

  71. Díez VK, Apesteguía CR, Di Cosimo JI (2003) Effect of the acid-base properties of Mg–Al mixed oxides on the catalyst deactivation during aldol condensation reactions. Lat Am Appl Res 33:79–86

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Academy of Sciences of Ukraine, program KPKVK 6541230 “Support for the development of priority areas of scientific research” (0120U101212), grant of National Academy of Sciences of Ukraine for implementation of research projects of young scientist groups (0120U100182). The authors also acknowledge CERIC-ERIC Consortium for access to experimental facilities at Nuclear Magnetic Resonance Spectrometer “Magic” at Slovenian NMR Centre (Proposal Number: 20182046) and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga V. Larina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 1361 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larina, O.V., Valihura, K.V. & Čendak, T. Effect of the cerium modification on acid–base properties of Mg–Al hydrotalcite-derived oxide system and catalytic performance in ethanol conversion. Reac Kinet Mech Cat 132, 359–378 (2021). https://doi.org/10.1007/s11144-020-01907-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01907-4

Keywords

Navigation