Skip to main content
Log in

Influence of reaction parameters on glycerol dehydration over HZSM-5 catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

HZSM-5 with Si/Al ratio of 25 has been synthesized and applied as a catalyst to the gas-phase dehydration of glycerol. Despite the high conversion and selectivity to acrolein achieved by this zeolite, its deactivation is still an issue. Therefore, successful application of this zeolite depends on deep understanding of how operating conditions affect its behavior. This study aims to investigate how distinct reaction conditions influence conversion and selectivity over time of HZSM-5 with Si/Al ratio of 25. In order to accomplish these objectives, HZSM-5 was synthesized and characterized by X-ray diffraction, scanning electron microscopy, N2 adsorption, temperature-programmed desorption of NH3 and thermogravimetric analysis. The catalyst was tested under different conditions of O2 concentration (0, 10, 15 and 20 V%), temperature (300, 325 and 350 °C), glycerol aqueous solution concentration (10, 15 and 20 wt%) and spatial velocities (1091, 1227 and 1363 h−1). Results showed that the different conditions under evaluation played a key role in the catalyst performance and lifetime. Under the range studied, increasing O2 concentration and temperature, and decreasing glycerol feeding ratio and spatial velocity had positive effect on glycerol conversion. Selection of proper operating conditions enabled the achievement of high glycerol conversion (above 93%) and high selectivity to acrolein (around 79% of the liquid products) over 15 h of reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Watanabe M, Lida T, Aizawa Y, Aida TM, Inomata H (2007) Bioresource Technol 98:1285–1290

    CAS  Google Scholar 

  2. Ott L, Bicker M, Vogel H (2006) Green Chem 8:214–220

    CAS  Google Scholar 

  3. Celik D, Yildiz M (2020) Reac Kinet Mech Cat 129:693–705

    CAS  Google Scholar 

  4. Yan W, Suppe GJ (2009) Ind Eng Chem Res 48:3279–3283

    CAS  Google Scholar 

  5. Dieuzeide ML, Jobbagy M, Amadeo N (2016) Ind Eng Chem Res 55:2527–2533

    CAS  Google Scholar 

  6. Sever B, Yildiz M (2020) Reac Kinet Mech Cat 130:863–874

    CAS  Google Scholar 

  7. Katryniok B, Paul S, Bellière-Baca V, Rey P, Dumeignil F (2010) Green Chem 12:2079–2098

    CAS  Google Scholar 

  8. Patience GS, Farrie Y, Devaux J-F, Dubois J-L (2012) Chem Eng Technol 35:1699–1706

    CAS  Google Scholar 

  9. Corma A, Huber GW, Sauvanaud L, O’Connor P (2008) J Catal 257:163–171

    CAS  Google Scholar 

  10. Viswanadham B, Nagaraju N, Rohitha CN, Vishwanathan V, Chary KVR (2018) Catal Lett 148:397–406

    CAS  Google Scholar 

  11. Corma A (1995) Chem Rev 95:559–614

    CAS  Google Scholar 

  12. Hubbard AT (2002) Encyclopedia of surface and colloid science. Marcel Dekker, New York

    Google Scholar 

  13. Xu N, Pan D, Wu Y, Xu S, Gao L, Zhang J, Xiao G (2019) Reac Kinet Mech Cat 127:449–467

    CAS  Google Scholar 

  14. Ren X, Zhang F, Sudhakar M, Wang N, Dai J, Liu L (2019) Catal Today 332:20–27

    CAS  Google Scholar 

  15. Decolatti HP, Dalla Costa BO, Querini CA (2015) Micropor Mesopor Matter 204:180–189

    CAS  Google Scholar 

  16. Wang Y, Wang R, Xu D, Sun C, Ni L, Zeng S, Jiang S, Zhang Z, Qiu S (2016) New J Chem 40:4398–4405

    CAS  Google Scholar 

  17. Neves TM, Fernandes JO, Lião LM, Silva ED, Rosa CA, Mortola VB (2019) Micropor Mesopor Matter 275:244–252

    CAS  Google Scholar 

  18. Groen JC, Zhu W, Brouwer S, Huynink SJ, Kapteijn F, Moulijn JA, Pérez-Ramirez J (2007) J Am Chem Soc 129:355–360

    CAS  PubMed  Google Scholar 

  19. Martinuzzi I, Azizi Y, Devaux J, Tretjak S, Zahraa O (2014) Chem Eng Sci 116:118–127

    CAS  Google Scholar 

  20. Liu C, Liu R, Wang T (2015) Can J Chem Eng 93:2177–2183

    CAS  Google Scholar 

  21. Kim YT, Jung K-D, Park ED (2011) Appl Catal A 393:275–287

    CAS  Google Scholar 

  22. Treacy MMJ, Higgins JB (2007) Collection of simulated XRD powder patterns for zeolites. Elsevier, Amsterdam

    Google Scholar 

  23. Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R (2009) Nature 461:246–249

    CAS  PubMed  Google Scholar 

  24. Wang Y, Ma J, Ren F, Du J, Li R (2017) Micropor Mesopor Matter 240:22–30

    CAS  Google Scholar 

  25. Song G, Xue D, Xue J, Li F (2017) Micropor Mesopor Matter 248:192–203

    CAS  Google Scholar 

  26. Mortola VB, Ferreira AP, Fedeyko JM, Downing C, Bueno JMC (2010) J Mater Chem 20:7517–7525

    CAS  Google Scholar 

  27. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouqueirol J, Sing KSW (2015) Pure Appl Chem 87:1051–1069

    CAS  Google Scholar 

  28. Wang Y, Fan C, Li H, Wang X, Meng F, Sun C, Sun L (2019) Trans Tianjin Univ 25:9–22

    CAS  Google Scholar 

  29. Huang L, Qin F, Huang Z, Zhuang Y, Ma J, Xu H, Shen W (2016) Ind Eng Chem Res 55:7318–7327

    CAS  Google Scholar 

  30. Al-Dughaither AS, Lasa H (2014) Ind Eng Chem Res 53:15303–15316

    CAS  Google Scholar 

  31. Rodrígues-González L, Hermes F, Bertmer M, Rodrígues-Castellón E, Jiménes-López A, Simon U (2007) Appl Catal A 328:174–182

    Google Scholar 

  32. Gu Y, Cui N, Yu Q, Li C, Cui Q (2012) Appl Catal A 429:9–16

    Google Scholar 

  33. Woolery GL, Kuehl GH, Timken HC, Chester AW, Vartuli JC (1997) Zeolites 19:288–296

    CAS  Google Scholar 

  34. Delepanque J, Dubois J-L, Devaux J-F, Ueda W (2010) J Catal 157:351–358

    Google Scholar 

  35. Wang F, Dubois J-L, Ueda W (2009) J Catal 268:260–267

    CAS  Google Scholar 

  36. Dos Santos MB, Andrade HMC, Mascarenhas AJS (2016) Micropor Mesopor Matter 223:105–113

    Google Scholar 

  37. Kim YT, Jung K-D, Park ED (2010) Micropor Mesopor Matter 131:28–36

    CAS  Google Scholar 

  38. Talebian-Kiakalaieh A, Amin NAS, Zakaria ZY (2016) J Ind Eng Chem 34:300–312

    CAS  Google Scholar 

  39. Lago CD, Decolatti HP, Tonutti LG, Dalla Costa BO, Querini CA (2018) J Catal 366:16–27

    CAS  Google Scholar 

  40. Yoda A, Ootawa A (2009) Appl Catal 360:66–70

    CAS  Google Scholar 

  41. Yun D, Yun YS, Kim TY, Park H, Lee JM, Ham JW, Yi J (2016) J Catal 341:33–43

    CAS  Google Scholar 

  42. Zhang H, Shao S, Xiao R, Shen D, Zeng J (2013) Ener Fuel 28:52–57

    Google Scholar 

  43. Gou M-L, Cai J, Song W, Liu Z, Ren Y-L, Pan B, Niu Q (2017) Catal Commun 98:116–120

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the CEME-SUL and the CIA FURG for SEM images, X-ray diffraction and thermogravimetric analyses.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Bongalhardo Mortola.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, J.O., Neves, T.M., da Silva, E.D. et al. Influence of reaction parameters on glycerol dehydration over HZSM-5 catalyst. Reac Kinet Mech Cat 132, 485–498 (2021). https://doi.org/10.1007/s11144-020-01874-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01874-w

Keywords

Navigation