Skip to main content
Log in

The kinetics of the precipitation of gypsum, CaSO4·2H2O, over a wide range of reactant concentrations

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this work, the precipitation kinetics of gypsum was studied over a wide range of degree of supersaturation at 25 °C in the reaction \({\text{Na}}_{2} {\text{SO}}_{{4\left( {{\text{aq}}} \right)}} + {\text{CaCl}}_{{2\left( {{\text{aq}}} \right)}} + 2{\text{ H}}_{2} {\text{O}} \to 2{\text{ NaCl}}_{{\left( {{\text{aq}}} \right)}} + {\text{CaSO}}_{4} \cdot 2{\text{ H}}_{2} {\text{O}}_{{\left( {\text{S}} \right)}}\) with the aim of constructing a comprehensive kinetic model for CaSO4·2H2O(s) formation that is valid from the lowest (0.04 M) to the highest (0.20 M) feasible initial reactant concentration. To monitor the variation of reactant concentrations during the precipitation reaction, conductometry was employed. For reasonably slow reactions (where the establishment of the equilibrium potential on the indicator electrode was possible), the measurements were supplemented by a Ca-ion-selective electrode. The structure and morphology of the precipitating solids was characterized by XRD and SEM. The induction period was found to decrease about two orders of magnitude with the increasing reactant concentration. It was experimentally established that the influence of the so-called wall effect is of secondary importance. Using the data collected, a kinetic model have been suggested that can describe the entire precipitation process of gypsum simultaneously, incorporating nucleation and crystal growth, in a wide concentration range. Our calculations strongly suggest that the inclusion of the CaSO4(aq) ion pair is necessary for the appropriate kinetic description of gypsum precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Laurence I (1926) J Mar Biol Assoc 14:441–446

    Google Scholar 

  2. Change F, Yuming Z (2011) Guangqing L Jingyi H, Wei S, Wendao W. Ind Eng Chem Res 50:10393–10399

    Google Scholar 

  3. Deng L, Zhang Y, Chen F, Cao S, You S, Liu Y, Zhang Y (2013) Chin J Chem Eng 21:1303–1312

    CAS  Google Scholar 

  4. Rashad MM, Mahmoud MHH, Ibrahim IA, Abdel-Aal EA (2004) J Cryst Growth 267:372–379

    CAS  Google Scholar 

  5. Bansal B, Müller-Steinhagen H, Chen XD (2001) Heat Transfer Eng 22:13–25

    CAS  Google Scholar 

  6. Hoang TA, Ang M, Rohl AL (2011) Chem Eng Technol 34:1003–1009

    CAS  Google Scholar 

  7. Hugot E (2014) Handbook of cane sugar engineering, Chapter 33 Crystalization 529–546

  8. Pan D, Wu H, Yang L (2017) J Environ Sci 55:303–310

    Google Scholar 

  9. Abdel-Aal EA, Abdel-Ghafar HM, El Anadouli BE (2015) Crys Growth Des 15:5133–5137

    CAS  Google Scholar 

  10. Hao Gong M (2018) CEED Seminar Proceedings 49–54

  11. McCartney ER, Alexander AE (1958) J Colloid Sci 13:383–396

    CAS  Google Scholar 

  12. Schierholtz OJ (1958) Can J Chem 36:1057–1063

    CAS  Google Scholar 

  13. Rahman F (2013) Desalination 319:79–84

    CAS  Google Scholar 

  14. Amjad Z (2013) Desalin Water Treat 51:4709–4718

    CAS  Google Scholar 

  15. Amjad Z, Koutsoukos PG (2014) Desalination 335:55–63

    CAS  Google Scholar 

  16. Benecke J, Rozova J, Ernst M (2018) Sep Purif Technol 198:68–78

    CAS  Google Scholar 

  17. Rabizadeh T, Morgan DJ, Peacock CL, Benning LG (2019) Ind Eng Chem Res 58:1561–1569

    CAS  Google Scholar 

  18. Raharjo S, Muryanto S, Jamari J, Bayuseno AP (2016) Orient J Chem 32:3145–3154

    CAS  Google Scholar 

  19. Liu ST, Nancollas GH (1970) J Cryst Growth 6:281–289

    CAS  Google Scholar 

  20. Nancollas GH, Reddy MM, Tsai F (1973) J Cryst Growth 20:125–134

    CAS  Google Scholar 

  21. Brandse WP, van Rosmalen GM, Brouwer G (1977) J Inorg Nucl Chem 39:2007–2010

    CAS  Google Scholar 

  22. Christoffersen J, Christoffersen MR, van Rosmalen GM, Marchée WGJ (1979) J Cryst Growth 47:607–612

    CAS  Google Scholar 

  23. van Rosmalen GM, Daudey PJ, Marchée WGJ (1981) J Cryst Growth 52:801–811

    Google Scholar 

  24. Christoffersen J, Christoffersen MR, Weijnen MPC, van Rosmalen GM (1982) J Cryst Growth 58:585–595

    CAS  Google Scholar 

  25. Witkamp GJ, van der Eerden JP, van Rosmalen GM (1990) J Cryst Growth 102:281–289

    CAS  Google Scholar 

  26. De Meer S, Spiers CJ, Peach CJ (2000) J Geol Soc London 157:269–281

    Google Scholar 

  27. Reznik IJ, Gavrieli I, Ganor J (2009) Geochim Cosmochim Acta 73:6218–6230

    CAS  Google Scholar 

  28. Reznik IJ, Gavrieli I, Antler G, Ganor J (2011) Geochim Cosmochim Acta 75:2187–2199

    CAS  Google Scholar 

  29. Amathieu L, Boistelle R (1988) J Cryst Growth 88:183–192

    CAS  Google Scholar 

  30. Singh NB, Middendorf B (2007) Prog Cryst Growth Charact Mater 53:57–77

    CAS  Google Scholar 

  31. Klepetsanis PG, Koutsoukos PG (1991) J Coll Interf Sci 143:299–308

    CAS  Google Scholar 

  32. Klepetsanis PG, Koutsoukos PG (1989) J Cryst Growth 98:480–486

    CAS  Google Scholar 

  33. Lancia A, Musmarra D, Prisciandaro M (1999) AlChE J 45:390–397

    CAS  Google Scholar 

  34. He S, Oddo JE, Tomson MB (1994) J Coll Interf Sci 162:297–303

    CAS  Google Scholar 

  35. Klepetsanis PG, Dalas E, Koutsoukos PG (1999) Langmuir 15:1534–1540

    CAS  Google Scholar 

  36. Prisciandaro M, Lancia A, Musmarra D (2001) Ind Eng Chem Res 40:2335–2339

    CAS  Google Scholar 

  37. Ahmed SB, Tlili MM, Amami M, Amor MB (2014) Ind Eng Chem Res 53:9554–9560

    Google Scholar 

  38. Alimi F, Elfil H, Gadrib A (2003) Desalination 157:9–16

    Google Scholar 

  39. Linnikov OD (1999) Desalination 122:1–14

    CAS  Google Scholar 

  40. Linnikov OD (2000) Desalination 128:35–46

    CAS  Google Scholar 

  41. Uchymiak M, Lyster E, Glater J, Cohen Y (2008) J Membr Sci 314:163–172

    CAS  Google Scholar 

  42. Halevy S, Korin E, Gilron J (2013) Ind Eng Chem Res 52:14647–14657

    CAS  Google Scholar 

  43. Barbiera E, Costea M, Genina A, Junga D, Lemoinea C, Logettea S, Muhrb H (2009) Chem Eng Sci 64:363–369

    Google Scholar 

  44. Rendel PM, Gavrieli I, Wolff-Boenisch D, Ganor J (2018) J Cryst Growth 485:28–40

    CAS  Google Scholar 

  45. Peintler G, ZITA(1989–2012) and ChemMech (2013–2019), A Comprehensive Program Package for Fitting Parameters of Chemical Reaction Mechanisms, Versions 2.1–5.0, Department of Physical Chemistry, University of Szeged, Szeged, Hungary (1989–2019).

  46. Ziegenheim Sz, Peintler G, Pálinkó I, Sipos P, in preparation

  47. Shedlovsky T, Brown AS (1934) J Am Chem Soc 56:1066–1071

    CAS  Google Scholar 

  48. Benson GC, Gordon AR (1945) J Chem Phys 13:470–472

    CAS  Google Scholar 

  49. Chambers JF, Stokes JM, Stokes RH (1956) J Phys Chem 60:985–986

    CAS  Google Scholar 

  50. Sun I, Newman J (1970) J Chem Eng Data; LBNL Report #: UCRL-19150

  51. Isono T (1984) J Chem Eng Data 29:45–52

    CAS  Google Scholar 

  52. McCleskey RB (2011) J Chem Eng Data 56:317–327

    CAS  Google Scholar 

  53. Chapman T, Newman J (1968) A compilation of selected thermodynamic and transport properties of binary electrolytes in aqueous solution, Lawrence Berkeley National Laboratory. LBNL Report #: UCRL-17767.

  54. Davies CW (1938) J Chem Soc 2093–2098

  55. Lide RD (ed) (2003) Handbook of chemistry and physics, 84th edn. CRC Press, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sipos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziegenheim, S., Peintler, G., Pálinkó, I. et al. The kinetics of the precipitation of gypsum, CaSO4·2H2O, over a wide range of reactant concentrations. Reac Kinet Mech Cat 131, 75–88 (2020). https://doi.org/10.1007/s11144-020-01838-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01838-0

Keywords

Navigation