Skip to main content
Log in

Highly stable and efficient visible-light-driven carbon dioxide reduction by zirconium–metalloporphyrin PCN-222 via dual catalytic routes

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The zirconium–metalloporphyrin PCN-222-Zn has been synthesized and studied as catalysts for photoreduction of CO2. Compared to the pure PCN-222, the PCN-222-Zn exhibited largely enhanced formate formation rate. Remarkably, the addition of Zn(II) ions (0.5 wt%) to the PCN-222 significantly increased the formate yield rate from 28.65 μmol/g/h to 354.14 μmol/g/h after 4 h reaction, which was highest reported value among Zr-based MOFs. The fluorescence spectroscopy indicated the better charge carrier separation efficiency for PCN-222-Zn. Also, the superior CO2 uptake abilities of PCN-222-Zn further explained the enhanced activity. We assumed that the Zr-oxo cluster and the metalloporphyrin linker formed dual photocatalytic routes. Besides, the uncoordinated porphyrin rings in 5% PCN-222-Zn can facilitate re-bonding of the broken Zn–N bonds during the photoreduction reaction, which guaranteed the long-lasting activity. This study may provide a new strategy to design novel MOF catalysts for CO2 reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lian SC, Kodaimati MS, Weiss EA (2018) Photocatalytically active superstructure of quantum dots and iron porphyrins for reduction of CO2 to CO in water. ACS Nano 12:568–575

    Article  CAS  PubMed  Google Scholar 

  2. Jiao Y, Zheng Y, Chen P, Jaroniec M, Qiao SZ (2017) Molecular scaffolding strategy with synergistic active centres to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol. J Am Chem Soc 139:18093–18100

    Article  CAS  PubMed  Google Scholar 

  3. Li F, Zhang L, Chen X, Liu YL, Xu SG, Cao SK (2017) Synergistically enhanced photocatalytic reduction of CO2 on N-Fe Co-doped BiVO4 under visible light irradiation. Phys Chem Chem Phys 19:21862–21868

    Article  CAS  PubMed  Google Scholar 

  4. Low JX, Cheng B, Yu JG (2017) Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl Surf Sci 392:658–686

    Article  CAS  Google Scholar 

  5. Guo N, Li H, Xu X, Yu H (2016) Hierarchical Fe3O4@MoS2/Ag3PO4 magnetic nanocomposites: enhanced and stable photocatalytic performance for water purification under visible light irradiation. Appl Surf Sci 389:227–239

    Article  CAS  Google Scholar 

  6. Jin J, Yu JG, Guo DP, Cui C, Ho WA (2015) Hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity. Small 11:5262–5271

    Article  CAS  PubMed  Google Scholar 

  7. Arakawa H, Aresta M, Armor JN, Barteau MA, Beckman EJ, Bell AT, Bercaw JE, Creutz C, Dinjus E, Dixon DA (2001) Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem Rev 101(4):953–996

    Article  CAS  PubMed  Google Scholar 

  8. Kuehnel MF, Orchard KL, Dalle KE, Reisner E (2017) Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. J Am Chem Soc 139(21):7217–7223

    Article  CAS  PubMed  Google Scholar 

  9. Rokowski DM, Dubois DL (2009) Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation. Acc Chem Res 41(12):1974–1982

    Article  Google Scholar 

  10. Xu HQ, Hu J, Wang D, Li Z, Zhang Q, Luo Y, Yu SH, Jiang HL (2015) Visible-light photoreduction of CO2 in a metal-organic framework: boosting electron-hole separation via electron trap states. J Am Chem Soc 137:13440–13443

    Article  CAS  PubMed  Google Scholar 

  11. Zhang HB, Wei J, Dong JC, Liu GG, Shi L, An PF, Zhao GX, Kong JT, Wang XJ, Meng XG, Zhang J, Ye JH (2016) Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew Chem Int Ed 55:14310–14314

    Article  CAS  Google Scholar 

  12. Farha OK, Shultz AM, Sarjeant AA, Nguyen ST, Hupp JT (2011) Active-site-accessible, porphyrinic metal-organic framework materials. J Am Chem Soc 133:5652–5655

    Article  CAS  PubMed  Google Scholar 

  13. Fateeva A, Devautour VS, Heymans N, Devic T, Greneche JM (2011) Series of porous 3-D coordination polymers based on iron(III) and porphyrin derivatives. Chem Mater 23:4641–4651

    Article  CAS  Google Scholar 

  14. Stephenson NA, Bell AT (2007) Mechanistic insights into iron porphyrin-catalyzed olefin epoxidation by hydrogen peroxide: factors controlling activity and selectivity. J Mol Catal A: Chem 275:54–62

    Article  CAS  Google Scholar 

  15. Morris W, Mcgrier PL, Furukawa H, Cascio D, Stoddart JF, Yaghi OM (2012) Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks. Inorg Chem 51:6443–6445

    Article  CAS  PubMed  Google Scholar 

  16. Konstantin E, Semrau AL, Mirza C, Roland AF (2018) Dual site Lewis-acid metal-organic framework catalysts for CO2 fixation: counteracting effects of node connectivity, defects and linker metalation. Chem Cat Chem 10:3506–3512

    Google Scholar 

  17. Wang C, Xie ZG, Dekrafft KE, Lin WB (2011) Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J Am Chem Soc 133:13445–13454

    Article  CAS  PubMed  Google Scholar 

  18. Alvaro M, Carbonell E, Ferrer B, Xamena FXL, Garcia H (2007) Semiconductor behavior of a metal-organic framework (MOF). Chem Eur J 13:5106–5112

    Article  CAS  PubMed  Google Scholar 

  19. Santaclara JG, Kapteijn F, Gascon J, Vander VMA (2017) Understanding metal-organic frameworks for photocatalytic solar fuel production. Cryst Eng Commun 19:4118–4125

    Article  CAS  Google Scholar 

  20. Wang DK, Huang RK, Liu WJ, Sun DR, Li ZH (2014) Fe-based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways. ACS Catal 4(12):4254–4260

    Article  CAS  Google Scholar 

  21. Kumar S, Wani Y, Mohmmad CT, Silva JA, Avula B, Sobral FN (2015) Porphyrins as nanoreactors in the carbon dioxide capture and conversion: a review. J Mater Chem A 3:19615–19637

    Article  CAS  Google Scholar 

  22. Devic T, Serre C (2014) High valence 3p and transition metal-based MOFs. Chem Soc Rev 43:6097–6115

    Article  CAS  PubMed  Google Scholar 

  23. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130(42):13850–13851

    Article  PubMed  Google Scholar 

  24. Shaikh SM, Usov PM, Zhu J, Cai M, Alatis J, Morris AJ (2019) Synthesis and defect characterization of phase-pure Zr-MOFs based on meso-tetracarboxyphenylporphyrin. Inorg Chem 58(8):5145–5153

    Article  CAS  PubMed  Google Scholar 

  25. Jahan M, Bao Q, Loh PK (2012) Electrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reaction. J Am Chem Soc 134(15):6707–6713

    Article  CAS  PubMed  Google Scholar 

  26. Shi L, Yang L, Zhang H, Chang K, Zhao G, Kako T, Ye J (2018) Implantation of iron(III) in porphyrinic metal organic frameworks for highly improved photocatalytic performance. Appl Catal B-Environ 224:60–68

    Article  CAS  Google Scholar 

  27. Zhang H, Wei J, Dong J, Liu G, Shi L, An P, Zhao G, Kong J, Wang X, Meng X (2016) Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew Chem Int Ed 55:14310–14314

    Article  CAS  Google Scholar 

  28. Liu YY, Klet RC, Hupp JT, Farha O (2016) Probing the correlations between the defects in metal-organic frameworks and their catalytic activity by an epoxide ring-opening reaction. Chem Commun 52:7806–7809

    Article  CAS  Google Scholar 

  29. Wang C, Liu XM, Zhang M, Geng Y, Zhao L, Li YG, Su ZM (2019) Two-dimensional cobaltporphyrin-based cobalt-organic framework as an efficient photocatalyst for CO2 reduction reaction: a computational study. ACS Sustain Chem Eng 7(16):14102–14110

    Article  CAS  Google Scholar 

  30. Spokoyny AM, Kim DW, Sumrein A, Mirkin CA (2009) Infinite coordination polymer nano- and microparticle structures. Chem Soc Rev 38:1218–1227

    Article  CAS  PubMed  Google Scholar 

  31. Sadeghi N, Sharifnia S, Do T (2018) Optimization and modelling of CO2 photoconversion using a response surface methodology with porphyrin-based metal organic framework. Reac Kinet Mech Cat 125:411–431

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by China Scholarship Council and Program for Innovative Research Team of Huizhou University (IRTHZU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiarui Jin.

Ethics declarations

Conflict of interest

There are no conflicts of interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, J. Highly stable and efficient visible-light-driven carbon dioxide reduction by zirconium–metalloporphyrin PCN-222 via dual catalytic routes. Reac Kinet Mech Cat 131, 397–408 (2020). https://doi.org/10.1007/s11144-020-01837-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01837-1

Keywords

Navigation