Skip to main content
Log in

Black titania with increased defective sites for phenol photodegradation under visible light

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Herein, the effect of an acid pre-treatment over TiO2 reduction was studied to obtain black titania with increased defectives sites. A commercial TiO2 (anatase > 99%; Merck) was pre-treated with aqueous solutions of boric, nitric, phosphoric and sulfuric acids at 353 K. Afterwards, the solids were annealed for 2 h at 773 K under 50 mL min−1 H2 flow. The above materials were analyzed by XRD, FTIR, XPS and UV–Vis to relate the chemical changes induced by the acid pre-treatment with crystalline and optical characteristics and; hence, to the photoactivity. The O/Ti surface ratio nor the energy band gap value of the TiO2 was altered by the pre-treatment using sulfuric acid; therefore, the photocatalytic activity was not modified using this acid. Despite the fact that pre-treatment with boric and phosphoric acid decreased the energy band gap to 2.1 and 2.9; respectively (which is favorable for the absorption of visible light), the incorporation of borate and phosphate species in the surface was detrimental for the photocatalytic process. The O/Ti ratio dropped from 2.0 to 1.5 after the reduction of the sample pretreated with nitric acid. Since more oxygen vacancies are introduced by using nitric acid, the visible-light absorption was increased and the phenol photodegradation was boosted. The modulation of the defective sites allows to engineering the TiO2 band-gap for solar-driven applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vilar VJP, Pillai SC, Poulios I, Mantzavinos D, Pintar A (2020) Advanced oxidation processes: recent achievements and perspectives. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-08929-4

    Article  Google Scholar 

  2. Gholizadeh F, Dianat MJ, Izadbakhsh A (2020) Photocatalytic degradation of phenol using silica SBA-16 supported TiO2. Reac Kinet Mech Catal 130:1171–1192. https://doi.org/10.1007/s11144-020-01817-5

    Article  CAS  Google Scholar 

  3. Bahrudin NN, Nawi MA (2018) Fabrication of immobilized powdered activated carbon as a sub-layer of TiO2 for the photocatalytic-adsorptive removal of phenol. Reac Kinet Mech Catal 124:153–169. https://doi.org/10.1007/s11144-017-1319-3

    Article  CAS  Google Scholar 

  4. Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA (2010) Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 261:3–18. https://doi.org/10.1016/j.desal.2010.04.062

    Article  CAS  Google Scholar 

  5. Sakar M, Prakash R, Do TO (2019) Insights into the TiO2-based photocatalytic systems and their mechanisms. Catalysts 9:680. https://doi.org/10.3390/catal9080680

    Article  CAS  Google Scholar 

  6. Cherni D, Ayedi S, Jaouali I, Moussa N, Nsib MF (2020) Preparation of solar/visible-light active TiO2 photocatalysts with carboxylic acids for the degradation of phenol. React Kinet Mech Catal 129:1091–1102. https://doi.org/10.1007/s11144-020-01756-1

    Article  CAS  Google Scholar 

  7. Vilar VJP, Pillai SC, Malato S (2019) Solar chemistry and photocatalysis: environmental applications. Environ Sci Pollut Res 26:36077–36079. https://doi.org/10.1007/s11356-019-07334-w

    Article  Google Scholar 

  8. Samsudin EM, Abd Hamid SB (2017) Effect of band gap engineering in anionic-doped TiO2 photocatalyst. Appl Surf Sci 391:326–336. https://doi.org/10.1016/j.apsusc.2016.07.007

    Article  CAS  Google Scholar 

  9. El-Salamony RA, Gobara HM, Younis SA, Moustafa YM (2017) Zn2+-doped x-Ti–SiO2 tricomposites for enhancement the photo-catalytic degradation of phenol under UV irradiation. J Sol-Gel Sci Technol 83:422–435. https://doi.org/10.1007/s10971-017-4427-7

    Article  CAS  Google Scholar 

  10. Onna D, Fuentes KM, Spedalieri C, Perullini M, Marchi MC, Alvarez F, Candal RJ, Bilmes SA (2018) Wettability, photoactivity, and antimicrobial activity of glazed ceramic tiles coated with titania films containing tungsten. ACS Omega 3:17629–17636. https://doi.org/10.1021/acsomega.8b03339

    Article  CAS  Google Scholar 

  11. Ganduglia-Pirovano MV, Hofmann A, Sauer J (2007) Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges. Surf Sci Rep 62:219–270. https://doi.org/10.1016/j.surfrep.2007.03.002

    Article  CAS  Google Scholar 

  12. Liu B, Zhao X, Yu J, Parkin IP, Fujishima A, Nakata K (2019) Intrinsic intermediate gap states of TiO2 materials and their roles in charge carrier kinetics. J Photochem Photobiol C 39:1–57. https://doi.org/10.1016/j.jphotochemrev.2019.02.001

    Article  CAS  Google Scholar 

  13. Khlyustova A, Sirotkin N, Kusova T, Kraev A, Titov V, Agafonov A (2020) Doped TiO2: the effect of doping elements on photocatalytic activity. Mater Adv. https://doi.org/10.1039/D0MA00171F

    Article  Google Scholar 

  14. Colón G, Sánchez-España JM, Hidalgo MC, Navío JA (2006) Effect of TiO2 acidic pre-treatment on the photocatalytic properties for phenol degradation. J Photochem Photobiol A 179:20–27. https://doi.org/10.1016/j.jphotochem.2005.07.007

    Article  CAS  Google Scholar 

  15. Kun R, Tarján S, Oszkó A, Seemann T, Zöllmer V, Busse M, Dékány I (2009) Preparation and characterization of mesoporous N-doped and sulfuric acid treated anatase TiO2 catalysts and their photocatalytic activity under UV and Vis illumination. J Solid State Chem 182:3076–3084. https://doi.org/10.1016/j.jssc.2009.08.022

    Article  CAS  Google Scholar 

  16. Rajaraman TS, Parikh SP, Gandhi VG (2020) Black TiO2: a review of its properties and conflicting trends. Chem Eng J 389:123918. https://doi.org/10.1016/j.cej.2019.123918

    Article  CAS  Google Scholar 

  17. Thompson TL, Yates JT (2005) TiO2-based photocatalysis: surface defects, oxygen and charge transfer. Top Catal 35:197–210. https://doi.org/10.1007/s11244-005-3825-1

    Article  CAS  Google Scholar 

  18. Zhang K, Park JH (2017) Surface localization of defects in black TiO2: enhancing photoactivity or reactivity. J Phys Chem Lett 8:199–207. https://doi.org/10.1021/acs.jpclett.6b02289

    Article  CAS  PubMed  Google Scholar 

  19. Bi Q, Huang X, Dong Y, Huang F (2020) Conductive black titania nanomaterials for efficient photocatalytic degradation of organic pollutants. Catal Lett 150:1346–1354. https://doi.org/10.1007/s10562-019-02941-1

    Article  CAS  Google Scholar 

  20. Aïnouche L, Hamadou L, Kadri A, Benbrahim N, Bradai D (2016) Ti3+ states induced band gap reduction and enhanced visible light absorption of TiO2 nanotube arrays: effect of the surface solid fraction factor. Sol Energy Mater Sol Cells 151:179–190. https://doi.org/10.1016/j.solmat.2016.03.013

    Article  CAS  Google Scholar 

  21. Liu H, Ma H, Li X, Li W, Wu M, Bao X (2003) The enhancement of TiO2 photocatalytic activity by hydrogen thermal treatment. Chemosphere 50:39–46. https://doi.org/10.1016/S0045-6535(02)00486-1

    Article  CAS  PubMed  Google Scholar 

  22. Zhou X, Liu N, Schmuki P (2014) Ar+-ion bombardment of TiO2 nanotubes creates co-catalytic effect for photocatalytic open circuit hydrogen evolution. Electrochem Commun 49:60–64. https://doi.org/10.1016/j.elecom.2014.09.013

    Article  CAS  Google Scholar 

  23. Teng F, Li M, Gao C, Zhang G, Zhang P, Wang Y, Chen L, Xie E (2014) Preparation of black TiO2 by hydrogen plasma assisted chemical vapor deposition and its photocatalytic activity. Appl Catal B 148–149:339–343. https://doi.org/10.1016/j.apcatb.2013.11.015

    Article  CAS  Google Scholar 

  24. Khanam R, Taparia D, Mondal B, Mohanta D (2016) Black titania: effect of hydrogenation on structural and thermal stability of nanotitania. Appl Phys A 122:92. https://doi.org/10.1007/s00339-016-9618-5

    Article  CAS  Google Scholar 

  25. Ross JRH (2019) Catalyst characterization. Contemp Catal. https://doi.org/10.1016/B978-0-444-63474-0.00005-9

    Article  Google Scholar 

  26. Lee H-L, Flynn NT (2006) X-ray photoelectron spectroscopy. In: Viji DR (ed) Handbook of applied solid state spectroscopy. Springer, Boston, pp 485–507

    Chapter  Google Scholar 

  27. Greenlief CM, White JM, Ko CS, Gorte RJ (1985) An XPS investigation of titanium dioxide thin films on polycrystalline platinum. J Phys Chem 89:5025–5028. https://doi.org/10.1021/j100269a027

    Article  CAS  Google Scholar 

  28. Xiong L-B, Li J-LB, Yang YY (2012) Surface of titanium dioxide: generation, properties and photocatalytic application. J Nanomater 2012:1–13. https://doi.org/10.1155/2012/831524

    Article  CAS  Google Scholar 

  29. Zhao D, Chen C, Wang Y, Ji H, Ma W, Zang L, Zhao J (2008) Surface modification of TiO2 by phosphate: effect on photocatalytic activity and mechanism implication. J Phys Chem C 112:5993–6001. https://doi.org/10.1021/jp712049c

    Article  CAS  Google Scholar 

  30. Pap Z, Karácsonyi É, Cegléd Z, Dombi A, Danciu V, Popescu IC, Baia L, Oszkó A, Mogyorósi K (2012) Dynamic changes on the surface during the calcination of rapid heat treated TiO2 photocatalysts. Appl Catal B 111–112:595–604. https://doi.org/10.1016/j.apcatb.2011.11.012

    Article  CAS  Google Scholar 

  31. Kumar PM, Badrinarayanan S, Sastry M (2000) Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films 358:122–130. https://doi.org/10.1016/S0040-6090(99)00722-1

    Article  CAS  Google Scholar 

  32. Vijay M, Selvarajan V, Sreekumar KP, Yu J, Liu S, Ananthapadmanabhan PV (2009) Characterization and visible light photocatalytic properties of nanocrystalline TiO2 synthesized by reactive plasma processing. Sol Energy Mater Sol Cells 93:1540–1549. https://doi.org/10.1016/j.solmat.2009.04.004

    Article  CAS  Google Scholar 

  33. Jun L, Shuping X, Shiyang G (1995) FT-IR and Raman spectroscopic study of hydrated borates. Spectrochim Acta A 51:519–532. https://doi.org/10.1016/0584-8539(94)00183-C

    Article  Google Scholar 

  34. Jastrzębski W, Sitarz M, Rokita M, Bułat K (2011) Infrared spectroscopy of different phosphates structures. Spectrochim Acta A 79:722–727. https://doi.org/10.1016/j.saa.2010.08.044

    Article  CAS  Google Scholar 

  35. Onoda H, Matsukura A (2015) Influence of concentration in phosphoric acid treatment of titanium oxide and their powder properties. J Asian Ceram Soc 3:27–31. https://doi.org/10.1016/j.jascer.2014.10.003

    Article  Google Scholar 

  36. Zhang M, Dai Y, Zhang S, Chen W (2011) Highly efficient photocatalytic activity of boron-doped TiO2 for gas phase degradation of benzene. Rare Met 30:243–248. https://doi.org/10.1007/s12598-011-0278-5

    Article  CAS  Google Scholar 

  37. Leshuk T, Parviz R, Everett P, Krishnakumar H, Varin RA, Gu F (2013) Photocatalytic activity of hydrogenated TiO2. ACS Appl Mater Interfaces 5:1892–1895. https://doi.org/10.1021/am302903n

    Article  CAS  PubMed  Google Scholar 

  38. Grabowska E, Zaleska A, Sobczak JW, Gazda M, Hupka J (2009) Boron-doped TiO2: characteristics and photoactivity under visible light. Procedia Chem 1:1553–1559. https://doi.org/10.1016/j.proche.2009.11.003

    Article  CAS  Google Scholar 

  39. Nelson NC, Wang Z, Naik P, Manzano JS, Pruski M, Slowing II (2017) Phosphate modified ceria as a Brønsted acidic/redox multifunctional catalyst. J Mater Chem A 5:4455–4466. https://doi.org/10.1039/C6TA08703E

    Article  CAS  Google Scholar 

  40. Park D-R, Zhang J, Ikeue K, Yamashita H, Anpo M (1999) Photocatalytic oxidation of ethylene to CO2 and H2O on ultrafine powdered TiO2 photocatalysts in the presence of O2 and H2O. J Catal 185:114–119. https://doi.org/10.1006/jcat.1999.2472

    Article  CAS  Google Scholar 

  41. Jun J, Dhayal M, Shin J-H, Kim J-C, Getoff N (2006) Surface properties and photoactivity of TiO2 treated with electron beam. Radiat Phys Chem 75:583–589. https://doi.org/10.1016/j.radphyschem.2005.10.015

    Article  CAS  Google Scholar 

  42. Xiong L-B, Li J-L, Yang B, Yu Y (2012) Ti3+ in the surface of titanium dioxide: generation, properties and photocatalytic application. J Nanomater 2012:1–13. https://doi.org/10.1155/2012/831524

    Article  CAS  Google Scholar 

  43. Amano F (2017) Hydrogen reduced rutile titanium dioxide photocatalyst. In: Janus M (ed) Titanium dioxide. InTech, London, pp 101–115

    Google Scholar 

  44. Nawaz R, Kait CF, Chia HY, Isa MH, Huei LW (2019) Glycerol-mediated facile synthesis of colored titania nanoparticles for visible light photodegradation of phenolic compounds. Nanomaterials 9:1586. https://doi.org/10.3390/nano9111586

    Article  CAS  PubMed Central  Google Scholar 

  45. Kang X, Song X-Z, Han Y, Cao J, Tan Z (2018) Defect-engineered TiO2 hollow spiny nanocubes for phenol degradation under visible light irradiation. Sci Rep 8:5904. https://doi.org/10.1038/s41598-018-24353-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xing M, Fang W, Nasir M, Ma Y, Zhang J, Anpo M (2013) Self-doped Ti3+-enhanced TiO2 nanoparticles with a high-performance photocatalysis. J Catal 297:236–243. https://doi.org/10.1016/j.jcat.2012.10.014

    Article  CAS  Google Scholar 

  47. Wang T, Zhang Y, Pan J, Li B, Wu L, Jiang B (2019) Hydrothermal reduction of commercial P25 photocatalysts to expand their visible-light response and enhance their performance for photodegrading phenol in high-salinity wastewater. Appl Surf Sci 480:896–904. https://doi.org/10.1016/j.apsusc.2019.03.052

    Article  CAS  Google Scholar 

  48. Cao Y, Xing Z, Hu M, Li Z, Wu X, Zhao T, Xiu Z, Yang S, Zhou W (2017) Mesoporous black N-TiO2x hollow spheres as efficient visible-light-driven photocatalysts. J Catal 356:246–254. https://doi.org/10.1016/j.jcat.2017.10.023

    Article  CAS  Google Scholar 

  49. Wang S, Cai J, Mao J, Li S, Shen J, Gao S, Huang J, Wang X, Parkin IP, Lai Y (2019) Defective black Ti3+ self-doped TiO2 and reduced graphene oxide composite nanoparticles for boosting visible-light driven photocatalytic and photoelectrochemical activity. Appl Surf Sci 467–468:45–55. https://doi.org/10.1016/j.apsusc.2018.10.138

    Article  CAS  Google Scholar 

  50. Hu M, Xing Z, Cao Y, Li Z, Yan X, Xiu Z, Zhao T, Yang S, Zhou W (2018) Ti3+ self-doped mesoporous black TiO2/SiO2/g-C3N4 sheets heterojunctions as remarkable visible-lightdriven photocatalysts. Appl Catal B 226:499–508. https://doi.org/10.1016/j.apcatb.2017.12.069

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Santiago Marrero, Maria C. Goite and Ismael González for XRD, FTIR and XPS measurements, respectively. This project was funded by CDCH-UCV No. PG-03-0788-2013/1. KMF acknowledge CONACYT-México for the postdoctoral scholarship 2019-2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keyla M. Fuentes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 179 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuentes, K.M., Venuti, D. & Betancourt, P. Black titania with increased defective sites for phenol photodegradation under visible light. Reac Kinet Mech Cat 131, 423–435 (2020). https://doi.org/10.1007/s11144-020-01832-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01832-6

Keywords

Navigation