Skip to main content
Log in

Ru-doped transition metal catalysts for liquid-phase Fischer–Tropsch synthesis

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this paper the catalytic activity of the Ru-doped polymer-based catalysts synthesized by the hydrothermal deposition is described. The catalytic properties of the synthesized systems were studied in the liquid-phase Fischer–Tropsch synthesis for the production of liquid gasoline and diesel-range hydrocarbons. The catalysts showed high CO hydrogenating activity allowing more than 20% of CO conversion to be obtained for one cycle. The yield of liquid hydrocarbons (mainly linear C5-C13) was found to be more than 80%. The addition of the ruthenium to the commonly used Co, Ni, and Fe enhances both the catalytic activity and the yield of the liquid hydrocarbons. The catalysts seem to be stable for minimum 80 h on stream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

FTS:

Fischer–Tropsch synthesis

MOF:

Metal–organic frameworks

HPS:

Hypercrosslinked polystyrene

GCMS:

Gas chromatography mass-specrtometry

DTG:

Differencial thermogravimetry

XPS:

X-ray photoelectron spectroscopy

TEM:

Transmission electron microscopy

TGA:

Thermogravimetric analysis

References

  1. Jun K-W, Roh H-S, Kim K-S, Ryu J-S, Lee K-W (2004) Appl Catal A 259:221–226

    CAS  Google Scholar 

  2. Van Steen E, Claeys M (2008) Chem Eng Technol 31(5):655–666

    Google Scholar 

  3. Zamani Y, Zamaniyan A, Bahadoran F, Shojaei M (2015) J Petrol Sci Technol 5(1):21–27

    Google Scholar 

  4. Reactor T, Abatzoglou N, Legras B (2015) Int J Environ Pollut Remediat 3:9–15

    Google Scholar 

  5. Keim W (1983) Catalysis in C1 chemistry. Springer, Netherlands

    Google Scholar 

  6. Herington EFG (1946) Chemistry & industry. Wiley, London

    Google Scholar 

  7. Schulz H (1999) Appl Catal A 186:3–12

    CAS  Google Scholar 

  8. Pichler H (1952) Twenty-five years of synthesis of gasoline by catalytic conversion ofcarbon monoxide and hydrogen. Academic Press Inc., New York

    Google Scholar 

  9. Storch HH, Golumbic N, Anderson RB (1951) The Fischer-Tropsch and related synthesis. Wiley, New York

    Google Scholar 

  10. Jahangiri H, Bennett J, Mahjoubi P, Wilson K, Gu S (2014) Catal Sci Technol 4:2210–2229

    CAS  Google Scholar 

  11. Karn FS, Shultz JF, Anderson RB (1965) Ind Eng Chem Prod Res Dev 4:265–269

    CAS  Google Scholar 

  12. Kellner CS, Bell AT (1981) J Catal 70(2):418–432

    CAS  Google Scholar 

  13. Madon RJ, Iglesia E (1994) J Catal 149:247–489

    Google Scholar 

  14. Zhang S-T, Yan H, Wei M, Evans DG, Duan X (2014) RSC Adv 4:30241–30249

    CAS  Google Scholar 

  15. Kokes RJ, Emmett PH (1960) J Am Chem Soc 82:4497–4501

    CAS  Google Scholar 

  16. Dutta P, Manivannan A, Seehra MS, Adekknattu PM, Guin JA (2004) Catal Lett 94:181–185

    CAS  Google Scholar 

  17. Martínez A, López C, Márquez F, Díaz I (2003) J Catal 220:486–499

    Google Scholar 

  18. Sukkathanyawata H, Tungkamania S, Phongaksorna M, Rattana T, Narataruksa P, Yoosuk B (2015) Energy Procedia 79:372–377

    Google Scholar 

  19. Thiessen J, Rose A, Meyer J, Jess A, Curulla-Ferré D (2012) Microporous & Mesoporous Mater 164:199–206

    CAS  Google Scholar 

  20. Oh JH, Bae JW, Park SJ, Khanna PK, Jun KW (2009) Catal Let 130:403–409

    CAS  Google Scholar 

  21. Reuel RC, Bartholomew CH (1984) J Catal 85:78–88

    CAS  Google Scholar 

  22. Bartolini M, Molina J, Alvarez J, Goldwasser M, Pereira AP, Perez Zurita MJ (2015) J Power Sour 285:1–11

    CAS  Google Scholar 

  23. Ghampson IT, Newman C, Kong L, Pier E, Hurley KD, Pollock RA, Walsh BR, Goundie B, Wright J, Wheeler MC, Meulenberg RW, DeSisto WJ, Frederick BG, Austin RN (2010) Appl Catal A 388:57–67

    CAS  Google Scholar 

  24. Li H, Hou B, Wang J, Qin C, Zhong M, Huang X, Jia L, Li D (2018) Mol Catal 459:106–112

    CAS  Google Scholar 

  25. Zhao X, Lu S, Wang L, Li L, Wang G, Zhang Y, Li J (2018) Mol Catal 449:99–105

    CAS  Google Scholar 

  26. Rytter E, Borg Ø, Enger BC, Holmen A (2019) J Catal 373:13–24

    CAS  Google Scholar 

  27. Kliewer CE, Soled SL, Kiss G (2019) Catal Today 323:233–256

    CAS  Google Scholar 

  28. Taghavi S, Tavasoli A, Asghari A, Signoretto M (2019) Int J Hydrogen Energy 44:10604–10615

    CAS  Google Scholar 

  29. Zhu C, Bollas GM (2018) Appl Catal B 235:92–102

    Google Scholar 

  30. Isaeva VI, Eliseev OL, Kazantsev RV, Chernyshev VV, Tarasov AL, Davydov PE, Lapidus AL, Kustov LM (2019) Polyhedron 157:389–395

    CAS  Google Scholar 

  31. Woodward RT, Stevens LA, Dawson R, Vijayaraghavan M, Hasell T, Silverwood IP, Ewing AV, Ratvijitvech T, Exley JD, Chong SY, Blanc F, Adams DJ, Kazarian SG, Snape CE, Drage TC, Cooper AI (2014) J Am Chem Soc 136(25):9028–9035

    CAS  PubMed  Google Scholar 

  32. Lyubimov SE, Pavlova LA, Sokolovskaya MV, Korlyukov AA, Davankov VA (2019) Russ Chem Bull 8:1599–1602

    Google Scholar 

  33. Sidorov SN, Bronstein LM, Davankov VA, Tsyurupa MP, Solodovnikov SP, Valetsky PM, Wilder EA, Spontak RJ (1999) Chem Mater 11:3210–3215

    CAS  Google Scholar 

  34. Sidorov SN, Volkov IV, Davankov VA, Tsyurupa MP, Valetsky PM, Bronstein LM, Karlinsey R, Zwanziger JW, Matveeva VG, Sulman EM, Lakina NV, Wilder EA, Spontak RJ (2001) J Am Chem Soc 123(43):10502–10510

    CAS  PubMed  Google Scholar 

  35. Bykov A, Matveeva V, Sulman M, Valetsky P, Tkachenko O, Kustov L, Bronstein L, Sulman E (2009) Catal Today 140(1–2):64–69

    CAS  Google Scholar 

  36. Doluda VY, Sulman EM, Matveeva VG, Sulman MG, Lakina NV, Sidorov AI, Valetsky PM, Bronstein LM (2007) Chem Eng J 134:256–261

    CAS  Google Scholar 

  37. Sulman EM, Matveeva VG, Doluda VY, Sidorov AI, Lakina NV, Bykov AV, Sulman MG, Valetsky PM, Kustov LM, Tkachenko OP, Stein BD, Bronstein LM (2010) Appl Catal 94(1–2):200–210

    CAS  Google Scholar 

  38. Nikoshvili L, Shimanskaya E, Bykov A, Yuranov I, Kiwi-Minsker L, Sulman E (2015) Catal Today 241:179–188

    CAS  Google Scholar 

  39. Sapunov VN, Stepacheva AA, Sulman EM, Wärnå J, Mäki-Arvela P, Sulman MG, Sidorov AI, Stein BD, Murzin DY, Matveeva VG (2017) J Ind Eng Chem 46:426–435

    CAS  Google Scholar 

  40. Stepacheva AA, Markova ME, Bykov AV, Sidorov AI, Sulman MG, Matveeva VG, Sulman EM (2018) Reac Kinet Mech Cat 125:213–226

    CAS  Google Scholar 

  41. Stepacheva AA, Sidorov AI, Matveeva VG, Sulman MG, Sulman EM (2019) Chem Eng Technol 42(4):780–787

    CAS  Google Scholar 

  42. Markova ME, Gavrilenko AV, Stepacheva AA, Molchanov VP, Matveeva VG, Sulman MG, Sulman EM (2019) Kinet Catal 60(5):618–626

    CAS  Google Scholar 

  43. Hayashi H, Hakuta Y (2010) Materials 3(7):3794–3817

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Davis BH (2002) Catal Today 71(3–4):249–300

    CAS  Google Scholar 

  45. Delgado JA, Claver C, Castillon S, Curulla-Ferre D, Godard C (2015) ACS Catal 5:4568–4578

    CAS  Google Scholar 

  46. Khadzhiev SN, Krylova AYu (2011) Petrol Chem 51(2):74–85

    CAS  Google Scholar 

  47. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodrigues-Reinoso F, Rouquerol J, Sing KW (2015) Pure Appl Chem 87(9–10):1051–1069

    CAS  Google Scholar 

  48. Biesinger MC, Payne BP, Lau LWM, Gerson A, Smart RSC (2009) Surf Interface Anal 41:324–332

    CAS  Google Scholar 

  49. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Appl Surf Sci 257:2717–2730

    CAS  Google Scholar 

  50. Smirnova AL, Hu Y-L, Zhang L, Aindow M, Menard P, Singh P, Goberman D, Shaw L, Wan X, Rhine W (2009) ECS Trans 19(21):9–21

    CAS  Google Scholar 

  51. Grosvenor AP, Biesinger MC, Smart RSC, McIntyre NS (2006) Surf Sci 600:1771–1779

    CAS  Google Scholar 

  52. Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS (2004) Surf Interface Anal 36:1564–1574

    CAS  Google Scholar 

  53. Radu T, Iacovita C, Benea D, Turcu R (2017) Appl Surf Sci 405:337–343

    CAS  Google Scholar 

  54. Morgan DJ (2015) Surf Interface Anal 47:1072–1079

    CAS  Google Scholar 

Download references

Acknowledgements

The current work is financially supported by the Ministry of Science and Higher Education of the Russian Federation and the Russian Foundation for Basic Research (Grant 18-29-06004). Authors thank Dr. Liudmila Bronstein (Indiana University) for the help in TEM study, Dr. Alexey Bykov, Prof. Alexander Sidorov, and Dr, Yury Lugovoy (Tver State Technical University) for the help in XPS, BET and TGA study. Mariia Markova thanks the Foundation for the promotion of small-scale enterprises in the scientific and technical sphere (Program U.M.N.I.K, Grant 0059483) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonna A. Stepacheva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 613 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markova, M.E., Gavrilenko, A.V., Stepacheva, A.A. et al. Ru-doped transition metal catalysts for liquid-phase Fischer–Tropsch synthesis. Reac Kinet Mech Cat 130, 813–823 (2020). https://doi.org/10.1007/s11144-020-01800-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01800-0

Keywords

Navigation