Skip to main content
Log in

Effect of the distribution and dispersion of palladium nanoparticles on the reducibility and performance of Pd/Al2O3 catalyst in liquid-phase hydrogenation of olefins

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A series of Pd/γ-Al2O3 catalysts were prepared by wet impregnation method at different pH and time. The effect of metal distribution and dispersion on the catalyst reducibility in liquid-phase hydrogenation of olefins was studied. The samples were characterized by BET, XRD, ICP, FESEM, CO-chemisorption and H2-TPR techniques. Liquid-phase hydrogenation reaction was carried out in a three-phase trickle bed reactor to evaluate the performance of the catalyst samples. The best catalyst performance was attributed to a combination of its desirable characteristics, that is, high reducibility at lower temperatures, high Pd dispersion and an egg-shell Pd distribution which increase the accessibility of the reactants to Pd active sites in this diffusion-limited reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mironenko RM, Talsi VP, Gulyaeva TI, Trenikhin MV, Belskaya OB (2019) Aqueous-phase hydrogenation of furfural over supported palladium catalysts: effect of the support on the reaction routes. React. Kinet. Mech. Cat. 126:811–827. https://doi.org/10.1007/s11144-018-1505-y

    Article  CAS  Google Scholar 

  2. Benkhaled M, Morin S, Pichon C, Thomazeau C, Verdon C, Uzio D (2006) Synthesis of highly dispersed palladium alumina supported particles: Influence of the particle surface density on physico-chemical properties. Appl Catal A 312:1–11. https://doi.org/10.1016/j.apcata.2006.06.011

    Article  CAS  Google Scholar 

  3. Delage M, Didillon B, Huiban Y, Lynch J, Uzio D (2000) Highly dispersed Pd based catalysts for selective hydrogenation reactions. Stud Surf Sci Catal. https://doi.org/10.1016/S0167-2991(00)80332-8

    Article  Google Scholar 

  4. Howeizi J, Taghvaei-Ganjali S, Malekzadeh M, Motiee F, Sahebdelfar S (2019) Effect of preparation parameters on properties and performance of Pd/Al 2 O 3 catalyst in saturation of olefins. Res Chem Intermed 45:3165–3181. https://doi.org/10.1007/s11164-019-03785-5

    Article  CAS  Google Scholar 

  5. Shen Y, Cai L, Li J, Wang S, Huang K-H (1989) The effect of chloride complexes on Pd surface structure, dispersion and CO hydrogenation over Pd-Mg (II)/SiO2 catalysts. Catal Today 6:47–54. https://doi.org/10.1016/0920-5861(89)85005-9

    Article  CAS  Google Scholar 

  6. Liu R-J, Crozier P, Smith C, Hucul D, Blackson J, Salaita G (2005) Metal sintering mechanisms and regeneration of palladium/alumina hydrogenation catalysts. Appl Catal A 282:111–121. https://doi.org/10.1016/j.apcata.2004.12.015

    Article  CAS  Google Scholar 

  7. Komhom S, Mekasuwandumrong O, Praserthdam P, Panpranot J (2008) Improvement of Pd/Al2O3 catalyst performance in selective acetylene hydrogenation using mixed phases Al2O3 support. Catal Commun 10:86–91. https://doi.org/10.1016/j.catcom.2008.07.039

    Article  CAS  Google Scholar 

  8. Nag NK (1994) A study on the dispersion and catalytic activity of gamma alumina-supported palladium catalysts. Catal Lett 24:37–46. https://doi.org/10.1007/BF00807373

    Article  CAS  Google Scholar 

  9. Chang T-C, Chen J-J, Yeh C-T (1985) Temperature-programmed reduction and temperature-resolved sorption studies of strong metal-support interaction in supported palladium catalysts. J Catal 96:51–57. https://doi.org/10.1016/0021-9517(85)90359-8

    Article  Google Scholar 

  10. Latypova AR, Tarasyuk IA, Filippov DV, Lefedova OV, Bykov AV, Sidorov AI, Doluda VY, Sulman EM (2019) Synthesis, stability and activity of palladium supported over various inorganic matrices in the selective hydrogenation of nitroaniline. React Kinet Mech Cat 127:741–755. https://doi.org/10.1007/s11144-019-01590-0

    Article  CAS  Google Scholar 

  11. Boitiaux J, Cosyns J, Vasudevan S (1983) Hydrogenation of highly unsaturated hydrocarbons over highly dispersed palladium catalyst: Part I: behaviour of small metal particles. Appl Catal 6:41–51. https://doi.org/10.1016/0166-9834(83)80186-9

    Article  CAS  Google Scholar 

  12. Tauster S, Fung S (1978) Strong metal-support interactions: occurrence among the binary oxides of groups IIA–VB. J Catal 55:29–35. https://doi.org/10.1016/0021-9517(78)90182-3

    Article  CAS  Google Scholar 

  13. Espinosa-Alonso L, de Jong KP, Weckhuysen BM (2008) Effect of the nickel precursor on the impregnation and drying of γ-Al2O3 catalyst bodies: a UV−Vis and IR microspectroscopic study. J Phys Chem C 112:7201–7209. https://doi.org/10.1021/jp710676v

    Article  CAS  Google Scholar 

  14. Espinosa-Alonso L, De Jong K, Weckhuysen B (2010) A UV-Vis micro-spectroscopic study to rationalize the influence of Cl−(aq) on the formation of different Pd macro-distributions on γ-Al 2 O 3 catalyst bodies. Phys Chem Chem Phys 12:97–107. https://doi.org/10.1039/b91573k

    Article  CAS  PubMed  Google Scholar 

  15. Gaspar A, Dieguez L (2000) Dispersion stability and methylcyclopentane hydrogenolysis in Pd/Al2O3 catalysts. Appl Catal A 201:241–251. https://doi.org/10.1016/S0926-860X(00)00442-7

    Article  CAS  Google Scholar 

  16. Simone DO, Kennelly T, Farrauto RJ (1991) Reversible poisoning of palladium catalysts for methane oxidation. Appl Catal 70:87–100. https://doi.org/10.1016/S0166-9834(00)84156-1

    Article  CAS  Google Scholar 

  17. Souza P, Pereira M, Antunes O, Aranda D, Carneiro J (2002) 1, 3-Butadiene hydrogenation on pd-supported systems: geometric effects. Braz J Chem Eng 19:187–194. https://doi.org/10.1590/S0104-66322002000200005

    Article  CAS  Google Scholar 

  18. Ferrer V, Moronta A, Sánchez J, Solano R, Bernal S, Finol D (2005) Effect of the reduction temperature on the catalytic activity of Pd-supported catalysts. Catal Today 107:487–492. https://doi.org/10.1016/j.cattod.2005.07.059

    Article  CAS  Google Scholar 

  19. Chen G, Chou W-T, Yeh C-T (1983) The sorption of hydrogen on palladium in a flow system. Appl Catal 8:389–397. https://doi.org/10.1016/0166-9834(83)85009-X

    Article  CAS  Google Scholar 

  20. Lieske H, Voelter J (1985) Palladium redispersion by spreading of palladium (II) oxide in oxygen treated palladium/alumina. J Phys Chem 89:1841–1842. https://doi.org/10.1021/j100256a001

    Article  CAS  Google Scholar 

  21. Pachatouridou E, Papista E, Iliopoulou EF, Delimitis A, Goula G, Yentekakis IV, Marnellos GE, Konsolakis M (2015) Nitrous oxide decomposition over Al2O3 supported noble metals (Pt, Pd, Ir): effect of metal loading and feed composition. J Environ Chem Eng 3:815–821. https://doi.org/10.1016/j.jece.2015.03.030

    Article  CAS  Google Scholar 

  22. Avery N, Sanders J (1970) The structure of metallic particles in dispersed catalysts. J Catal 18:129–132. https://doi.org/10.1016/0021-9517(70)90171-5

    Article  CAS  Google Scholar 

  23. Sifontes ÁB, Gutierrez B, Mónaco A, Yanez A, Díaz Y, Méndez FJ, Llovera L, Cañizales E, Brito JL (2014) Preparation of functionalized porous nano-γ-Al2O3 powders employing colophony extract. Biotechnol Rep 4:21–29. https://doi.org/10.1016/j.btre.2014.07.001

    Article  Google Scholar 

  24. Conţescu C, Vass M (1987) The effect of pH on the adsorption of palladium (II) complexes on alumina. Appl Catal 33:259–271. https://doi.org/10.1016/S0166-9834(00)83060-2

    Article  Google Scholar 

  25. Milić NB, Bugarčić ŽD (1984) Hydrolysis of the palladium (II) ion in a sodium chloride medium. Transit Met Chem 9:173–176. https://doi.org/10.1007/BF00618610

    Article  Google Scholar 

  26. Conţescu C, Vass M (1991) Impregnation of alumina with palladium tetrahalide anionic complexes. React Kinet Catal Lett 43:393–398. https://doi.org/10.1007/BF02064703

    Article  Google Scholar 

  27. Baumgarten E, Zachos A (1981) Spectroscopic investigations of halogenated aluminas and silica aluminas. Spectrochim Acta A 37:757–761. https://doi.org/10.1016/0584-8539(81)80077-3

    Article  Google Scholar 

  28. Lavalley J-C, Benaissa M, Busca G, Lorenzelli V (1986) FT-IR study of the effect of pretreatment on the surface properties of alumina produced by flame hydrolysis of aluminium trichloride. Appl Catal 24:249–255. https://doi.org/10.1016/S0166-9834(00)81273-7

    Article  CAS  Google Scholar 

  29. Morterra C, Magnacca G (1996) A case study: surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed species. Catal Today 27:497–532. https://doi.org/10.1016/0920-5861(95)00163-8

    Article  CAS  Google Scholar 

  30. Vigué H, Quintard P, Merle-Méjean T, Lorenzelli V (1998) An FT–IR study of the chlorination of γ-alumina surfaces. J Eur Ceram Soc 18:305–309. https://doi.org/10.1016/S0955-2219(97)00142-8

    Article  Google Scholar 

  31. Sales EA, Jove J, de JesusMendes M, Bozon-Verduraz F (2000) Palladium, palladium–tin, and palladium–silver catalysts in the selective hydrogenation of hexadienes: TPR, Mössbauer, and infrared studies of adsorbed CO. J Catal 195:88–95. https://doi.org/10.1006/jcat.2000.2967

    Article  CAS  Google Scholar 

  32. Babu NS, Lingaiah N, Gopinath R, Sankar Reddy PS, Sai Prasad P (2007) Characterization and reactivity of alumina-supported Pd catalysts for the room-temperature hydrodechlorination of chlorobenzene. J Phys Chem C 111:6447–6453. https://doi.org/10.1021/jp065866r

    Article  CAS  Google Scholar 

  33. de Souza Monteiro R, Noronha FB, Dieguez LC, Schmal M (1995) Characterization of PdCeO2 interaction on alumina support and hydrogenation of 1, 3-butadiene. Appl Catal A 131:89–106. https://doi.org/10.1016/0926-860X(95)00137-9

    Article  Google Scholar 

  34. Troitskii SY, Fedotov M, Likholobov V (1993) Studies of the compositions of Pd (II) hydrolysis products. Russ Chem Bull 42:634–639. https://doi.org/10.1007/BF00703995

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedeh Malekzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howeizi, J., Taghvaei-Ganjali, S., Malekzadeh, M. et al. Effect of the distribution and dispersion of palladium nanoparticles on the reducibility and performance of Pd/Al2O3 catalyst in liquid-phase hydrogenation of olefins. Reac Kinet Mech Cat 130, 777–795 (2020). https://doi.org/10.1007/s11144-020-01795-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01795-8

Keywords

Navigation