Skip to main content
Log in

Methanation of CO2 over zeolite–promoted Ni/Al2O3 nanocatalyst under atmospheric pressure

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Zeolite was added at different weight percentages as a promoter to 10% Ni/Al2O3 and tested under atmospheric pressure for CO2 methanation for the first time. The influence of operational conditions and stability of the catalysts were investigated. The highest CO2 conversion of 99% and CH4 selectivity of 56% were achieved with 2% zeolite added catalyst at 350 °C reaction temperature. The textural and morphological characteristics of the non-promoted and zeolite promoted catalysts were established with Scanning electron microscopy, Fourier transform infrared spectrophotometer, BET analyser and X-Ray diffractometer. The addition of 2% zeolite increased the specific surface area of the catalyst while sustaining similar Ni metal surface area to the non-promoted one. However, at higher zeolite content, the CH4 selectivity reduced considerably due to the reduced Ni dispersion and specific surface area. The calcination temperature of 400 °C, H2/CO2 ratio of 4, GHSV of 72,000 SmL(gcat h)−1 resulted in the highest CH4 selectivity. The 2% zeolite added catalyst demonstrated superior resistance to deactivation in comparison to the non-promoted catalyst showing potential as a low-cost catalyst for further optimization studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Olah GA, Goeppert A, Prakash GKS (2009) J Org Chem 74:487–498

    Article  CAS  Google Scholar 

  2. Xiaoding X, Moulijn JA (1996) Energy Fuels 10:305–325

    Article  CAS  Google Scholar 

  3. National Oceanic and Atmospheric Administration (2017) Trend in atmospheric carbon dioxide, global greenhouse gas reference network, US department of commerce. https://www.esrl.noaa.gov/gmd/ccgg/trends/full.html. Accessed 8 Dec 2018

  4. Olah GA, Prakash GKS, Goeppert A (2011) J Am Chem Soc 133:12881–12898

    Article  CAS  Google Scholar 

  5. Li Y, Chan SH, Sun Q (2015) Nanoscale 7:8663–8683

    Article  CAS  Google Scholar 

  6. Sabatier P, Senderens JB (1902) C R Acad Sci 134:689–691

    Google Scholar 

  7. Frontera P, Macario A, Ferraro M, Antonucci P (2017) Catalysts 7:59–71

    Article  Google Scholar 

  8. Artz J, Müller TE, Thenert K (2018) Chem Rev 118:434–504

    Article  CAS  Google Scholar 

  9. Zhan Y, Wang Y, Gu D, Chen C, Jiang L, Takehira K (2018) Appl Surf Sci 459:74–79

    Article  CAS  Google Scholar 

  10. Mebrahtu C, Abate S, Perathoner S, Chen S, Centi G (2018) Catal Today 304:181–189

    Article  CAS  Google Scholar 

  11. Stangeland K, Kalai D, Li H, Yu Z (2017) Energy Proced 105:2022–2027

    Article  CAS  Google Scholar 

  12. Ricca A, Truda L, Palma V (2019) Chem Eng J 377:120461

    Article  Google Scholar 

  13. Bol RA, Harkness DD (1995) The use of zeolite molecular sieves for trapping low concentrations of CO2 from environmental atmospheres radiocarbon, vol 37. Cambridge University Press, Cambridge, pp 643–647

    Google Scholar 

  14. Choe K, Song S, Lee JH, Song YM (2013) A study on trapping CO2 using molecular sieve for14C AMS sample preparation radiocarbon, vol 55. Cambridge University Press, Cambridge, pp 421–425

    Google Scholar 

  15. Furukawa S, Okada M, Suzuki Y (1999) Energy Fuels 13:1074–1081

    Article  CAS  Google Scholar 

  16. Wen G, Xu Y, Xu Z, Tian Z (2009) Catal Lett 129:250–257

    Article  CAS  Google Scholar 

  17. Patterson A (1939) Phys Rev J Arch 56:978–982

    Article  CAS  Google Scholar 

  18. Farrauto RJ (1974) AIChE J 70:9

    CAS  Google Scholar 

  19. Aghamohammadi S, Haghighi M, Maleki M, Rahemi N (2017) Mol Catal 43:39–48

    Article  Google Scholar 

  20. Akbari E, Alavi SM, Rezaei M (2018) J CO2 Util 24:128–138

    Article  CAS  Google Scholar 

  21. Li Z, Zhu M, Chen X, Mei H (2018) J Fuel Chem Technol 46:54–58

    Article  CAS  Google Scholar 

  22. Soghrati E, Ong TKC, Poh CK, Kawi S, Borgna A (2018) Appl Catal B 235:130–142

    Article  CAS  Google Scholar 

  23. Talkhoncheh SK, Haghighi M, Jodeiri N, Aghamohammadi S (2017) J Nat Gas Sci Eng 46:699–709

    Article  Google Scholar 

  24. Oladipo AA, Vaziri R, Abureesh MA (2018) J Taiwan Inst Chem Eng 83:133–142

    Article  CAS  Google Scholar 

  25. Feyzi M, Khodaei MM, Shahmoradi J (2014) J Taiwan Inst Chem Eng 45:452–460

    Article  CAS  Google Scholar 

  26. Park BG, Chung KH (2018) Mol Catal 461:80–85

    Article  CAS  Google Scholar 

  27. Ahmad W, Younis MN, Shawabkeh R, Ahmed S (2017) Catal Commun 100:121–126

    Article  CAS  Google Scholar 

  28. Abelló S, Berrueco C, Montané D (2016) Fuel 113:598

    Article  Google Scholar 

  29. Westermann A, Azambre B, Bacariza MC, Graça I, Ribeiro MF, Lopes JM, Henriques C (2015) Appl Catal B 174:120–125

    Article  Google Scholar 

  30. Aksoylu AE, İlsen ÖZ (1997) Appl Catal A 164:1–11

    Article  Google Scholar 

  31. Ma S, Tan Y, Han Y (2011) J Nat Gas Chem 20:435–440

    Article  CAS  Google Scholar 

  32. Gao J, Wang Y, Ping Y, Hu D, Xu G, Gu F, Su F (2012) RSC Adv 2:2358–2368

    Article  CAS  Google Scholar 

  33. Olesen SE, Andersson KJ, Damsgaard CD, Chorkendorff I (2017) J Phys Chem C 121:15556–15564

    Article  CAS  Google Scholar 

  34. Garbarino G, Bellotti D, Riani P, Magistri L, Busca G (2015) Int J Hydrog Energy 40:9171–9782

    Article  CAS  Google Scholar 

  35. Khaliq A, Mistry P (1992) Chem Commun 57:2073–2077

    Google Scholar 

  36. Bacariza MC, Graça I, Westermann A, Ribeiro MB, Lopes JM, Henriques C (2016) Top Catal 59:314–325

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The PhD research of Abdullahi Isah was partly funded by the Tertiary Education Trust Fund provided by the Federal Government of Nigeria. The authors thank Tarık Haydar from the state laboratory helping with the analysis of the gas samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İme Akanyeti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 862 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isah, A., Akanyeti, İ. & Oladipo, A.A. Methanation of CO2 over zeolite–promoted Ni/Al2O3 nanocatalyst under atmospheric pressure. Reac Kinet Mech Cat 130, 217–228 (2020). https://doi.org/10.1007/s11144-020-01785-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01785-w

Keywords

Navigation