Skip to main content
Log in

Catalytic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran using V-containing heteropoly acid catalysts

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

2,5-Diformylfuran (DFF) is an attractive and challenging compound that can be synthesized with good selectivity by the oxidation of bio-based 5‐hydroxymethylfurfural (5-HMF) using specific catalysts. Vanadium-containing heteropoly acids (PMoV HPAs) are highly active oxidation catalysts whose activity can be tuned by changing vanadium(V) (VV) content. This study reports the preparation of a number of PMoV HPAs with different VV amount and type of outer-sphere cation and investigating their catalytic performance in 5-HMF-to-DFF conversion. The characterization of synthesized HPAs by simple instrumental methods (pH-measurement, potentiometry, and titration analysis) and NMR revealed retaining Keggin structure and increasing oxidation potential with rising VV amount. The complete optimization of reaction conditions allowed one to reach a DFF yield of 92% using Co2H6P3Mo18V7O84 at 110 °C in water/MIBK for 90 min under atmospheric pressure. The described method of 5-HMF oxidation is based on using effective soft oxidants that can be easily recycled and reused at least five times without significant loss of catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data and materials support our published claims and comply with field standards.

References

  1. Chernyshev VM, Kravchenko OA, Ananikov VP (2017) Russ Chem Rev 85(5):357–387

    Article  Google Scholar 

  2. Howarth OW, Morgan GG, McKee V, Nelson J (1999) J Chem Soc Dalton Trans 12:2097–2102

    Article  Google Scholar 

  3. Amarasekara AS, Green D, Williams LD (2009) Eur Polym J 45:595–598

    Article  CAS  Google Scholar 

  4. Ma J, Wang M, Du Z, Chen C, Gao J, Xu J (2012) Polym Chem 3:2346–2349

    Article  CAS  Google Scholar 

  5. Delidovich I, Hausoul PJC, Deng L, Pfützenreuter R, Rose M, Palkovits R (2016) Chem Rev 116:1540–1599

    Article  CAS  Google Scholar 

  6. Hopkins KT, Wilson WD, Bender BC, McCurdy DR, Hall JE, Tidwell RR, Kumar A, Bajic M, Boykin DW (1998) J Med Chem 41:3872–3878

    Article  CAS  Google Scholar 

  7. van Putten R-J, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Chem Rev 113:1499–1597

    Article  Google Scholar 

  8. Richter DT, Lash TD (1999) Tetrahedron Lett 40:6735–6738

    Article  CAS  Google Scholar 

  9. Del Poeta M, Schell WA, Dykstra CC, Jones S, Tidwell RR, Czarny A, Bajic M, Kumar A, Boykin D, Perfect JR (1998) Antimicrob Agents Chemother 42:2495–2502

    Article  Google Scholar 

  10. Tong X, Ma Y, Li Y (2010) Appl Catal A 385:1–13

    Article  CAS  Google Scholar 

  11. Amarasekara AS, Green D, McMillan E (2008) Catal Commun 9:286–288

    Article  CAS  Google Scholar 

  12. Navarro OC, Canós AC, Chornet SI (2009) Top Catal 52:304–314

    Article  CAS  Google Scholar 

  13. Ma JP, Du ZT, Xu J, Chu QH, Pang Y (2011) Chemsuschem 4:51–54

    Article  CAS  Google Scholar 

  14. Nie JF, Liu HC (2012) Pure Appl Chem 84:765–777

    Article  CAS  Google Scholar 

  15. Sádaba I, Gorbanev YY, Kegnaes S, Putluru SSR, Berg RW, Riisager A (2013) ChemCatChem 5:284–293

    Article  Google Scholar 

  16. Antonyraj CA, Jeong J, Kim B, Shin S, Kim S, Lee K-Y, Cho JK (2013) J Ind Eng Chem 19:1056–1059

    Article  CAS  Google Scholar 

  17. Zuo X, Venkitasubramanian P, Busch DH, Subramaniam B (2016) ACS Sustainable Chem Eng 4(7):3659–3668

    Article  CAS  Google Scholar 

  18. Han X, Geng L, Guo Y, Jia R, Liu X, Zhang Y, Wang Y (2016) Green Chem 18:1597–1604

    Article  CAS  Google Scholar 

  19. Hutin M, Rosnes MH, Long D-L, Cronin L (2013) In: Reedijk J, Poeppelmeier K (eds) Comprehensive inorganic chemistry II: from elements to applications, vol 2. Elsevier, Oxford

    Google Scholar 

  20. Wang S-S, Yang G-Y (2015) Chem Rev 115:4893–4962

    Article  CAS  Google Scholar 

  21. Odyakov VF, Zhizhina EG, Rodikova YA, Gogin LL (2015) Eur J Inorg Chem 2015(22):3618–3631

    Article  CAS  Google Scholar 

  22. Zhizhina EG, Odyakov VF (2014) Int J Chem Kinet 46(9):567–576

    Article  CAS  Google Scholar 

  23. Rodikova YA, Zhizhina EG, Pai ZP (2018) ChemistrySelect 3:4200–4206

    Article  CAS  Google Scholar 

  24. Wölfel R, Taccardi N, Bösmann A, Wasserscheid P (2011) Green Chem 13:2759–2763

    Article  Google Scholar 

  25. Li J, Ding D-J, Deng L, Guo Q-X, Fu Y (2012) Chemsuschem 5(7):1313–1318

    Article  CAS  Google Scholar 

  26. Albert J, Wölfel R, Bösmann A, Wasserscheid P (2012) Energy Environ Sci 5:7956–7962

    Article  CAS  Google Scholar 

  27. Liu Y, Zhu L, Tang J, Liu M, Cheng R, Hu C (2014) Chemsuschem 7:3541–3547

    Article  CAS  Google Scholar 

  28. Gromov NV, Taran OP, Delidovich IV, Pestunov AV, Rodikova YA, Yatsenko DA, Zhizhina EG, Parmon VN (2016) Catal Today 278:74–81

    Article  CAS  Google Scholar 

  29. Pashkov GL, Sajkova SV, Panteleeva MV (2010) RU Pat 2424190:C1

    Google Scholar 

  30. Dikshitulu LSA, Gopala Rao G (1962) Anal Bioanal Chem 189:421–426

    CAS  Google Scholar 

  31. Khenkin AM, Neumann R (2008) J Am Chem Soc 130:14474–14476

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The reported study was funded by Russian Foundation for Basic Research according to the research project No 18–33-00073.

Funding

This study was funded by RFBR (research project number 18–33-00073).

Author information

Authors and Affiliations

Authors

Contributions

All authors made an equal contribution to implementation of the study and preparation of the manuscript.

Corresponding author

Correspondence to Yulia Rodikova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 216 kb)

Supplementary file2 (DOCX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodikova, Y., Zhizhina, E. Catalytic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran using V-containing heteropoly acid catalysts. Reac Kinet Mech Cat 130, 403–415 (2020). https://doi.org/10.1007/s11144-020-01782-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01782-z

Keywords

Navigation