Skip to main content
Log in

Modelling carbon monoxide conversion into methanol over supported catalysts

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A deterministic mean field model for methanol, CH3OH, synthesis from CO and H2 over supported catalysts is proposed and solved numerically applying the finite difference method. The model is composed of a coupled system of PDEs subject to nonclassical conjugate conditions at the catalyst–support interface and includes the bulk diffusion of CO and H2 to and CH3OH from the surface of a bounded compartment. It also includes the adsorption and desorption of particles of both reactants and the surface diffusion of the adsorbed molecules and all intermediate reaction products. The influence of the initial concentration of H2, reactant adsorption and desorption rate constants, particle jumping rate constants via the catalyst–support interface, and reaction rate constants on the evolution of the catalytic reactivity of the supported catalyst is investigated. It is shown that under specific values of kinetic rate constants the turnover rate of CO and H2 into methanol can possesses one, two, or three peaks. The mechanism and conditions for arising of the second local maximum is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fiedler E, Grossmann G, Kersebohm DB, Weiss G, Witte C (2005) Methanol. In: Ullmann’s encyclopaedia of industrial chemistry, 7th edn. Wiley, Weinheim

  2. Mayra O, Leviska K (2008) Modelling in methanol synthesis. University of Oulu, Control engineering laboratory, Report A No, p 37

  3. Asinger F (1986) Methanol-chemie und Energierohstoff. Springer, Berlin

    Book  Google Scholar 

  4. Rasmussen DB, Janssens TVW, Temel B, Bligaard T, Hinnemann S, Helvegv J, Sehested J (2012) The energies of formation and mobilities of Cu surface species on Cu and ZnO in methanol and water gas shift atmospheres studied by DFT. J Catal 293:205–214

    Article  CAS  Google Scholar 

  5. Nata G (1955) Synthesis of methanol. In: Emmett PH (ed) Catalysis, vol 3. Reinhold, New York

    Google Scholar 

  6. Bakemeier H, Laurer PR, Schroder W (1970) Chem Eng Prog Symp Ser 66:1–10

    CAS  Google Scholar 

  7. Leonov VE, Karavaev MM, Tsybina EN, Petrischeva GS (1973) Kinet Catal 14:848

    Google Scholar 

  8. Villa P, Forzatti P, Buzzi-Ferraris G, Garone G, Pasquon I (1985) Synthesis of alcohols from carbon oxides and hydrogen. 1. Kinetics of the low-pressure methanol synthesis. Ind Eng Chem Process Des Dev 24:12–19

    Article  CAS  Google Scholar 

  9. Graaf GH, Beenackers AACM (1996) Comparison of two-phase and three-phase methanol synthesis processes. Chem Eng Process 35:413–427

    Article  CAS  Google Scholar 

  10. Vanden Bussche KM, Froment GF (1996) A steady-state kinetic model for methanol synthesis and the Water gas shift reaction on a commercial CU/ZnO/Al2O3 catalyst. J Catal 161:1–10

    Article  CAS  Google Scholar 

  11. Von Wedel W, Ledakowicz S, Decker WD (1988) Kinetics of methanol synthesis in the slurry phase. Chem Eng Sci 4:2169–2174

    Article  Google Scholar 

  12. Ledakowicz S, Stelmachowski M, Chacuk A (1992) Methanol synthesis in bubble column slurry reactors. Chem Eng Process 31:213–219

    Article  CAS  Google Scholar 

  13. Skrzypek J, Lachowska M, Moroz H (1991) Kinetics of methanol synthesis over commercial copper/zinc oxide/alumina catalysts. Chem Eng Sci 46:2809–2813

    Article  CAS  Google Scholar 

  14. Skrzypek J, Lachowska M, Grzesik M, Słoczyński J, Novak P (1995) Thermodynamics and kinetics of low pressure methanol synthesis. Chem Eng J 58:101–108

    CAS  Google Scholar 

  15. Coteron A, Hayhurst AN (1994) Kinetics of the synthesis of methanol from CO+H2 and CO+CO2+H2 over copper-based amorphous catalysts. Chem Eng Sci 49:209–221

    Article  CAS  Google Scholar 

  16. Šetinc M, Levec J (2001) Dynamics of a mixed slurry reactor for the three-phase methanol synthesis. Chem Eng Sci 56:6081–6087

    Article  Google Scholar 

  17. Studt F, Abild-Pedersen F, Wu Q, Jensen AD, Temel B, Grunwald JD, Norskov JK (2012) Co hydrogenation to methanol on Cu-Ni catalysts: theory and experiment. J Catal 293:51–60

    Article  CAS  Google Scholar 

  18. Yang Y, White MG, Liu P (2012) Theoretical study of methanol synthesis from CO\(_2\) hydrogenation on metal-doped Cu(111) surfaces. J Phys Chem C 116:248–256

    Article  CAS  Google Scholar 

  19. Dou M, Zhang M, Chen Y, Yu Y (2018) Theoretical study of methanol synthesis from CO\(_2\) and CO hydrogenation on the surface of ZrO\(_2\) supported In\(_2\)O\(_3\) catalyst. Surf Sci 672–673:7–12

    Article  Google Scholar 

  20. Ha NN, Ha NTT, Long NB, Cam LM (2019) Conversion of carbon monoxide into methanol on alumina-supported cobalt catalyst: role of the support and reaction mechanism - a theoretical study. Catalysts 9:1–14

    Google Scholar 

  21. Klier K (1982) Methanol synthesis. Adv Catal 31:243–313

    CAS  Google Scholar 

  22. Sloczynski J, Grabowski R, Olszewski P, Stoch J, Skrzypek J, Lachowska M (2004) Catalytic activity of the (\(\rm M/(3ZnO\cdot ZrO_2\)) system M=Cu, Ag, Au) in the hydrogenation of CO\(_2\) to methanol. Appl Catal A Gen 278:11–23

    Article  CAS  Google Scholar 

  23. Wu J, Saito M, Takeuchi M, Watanabe T (2001) The stability of Cu/ZnO-based catalysts in methanol synthesis from CO\(_2\)-rich feed and from Co-rich feed. Appl Catal A Gen 218:235–240

    Article  CAS  Google Scholar 

  24. Yang C, Ma Z, Zhao N, Wei W, Hu T, Sun Y (2006) Methanol synthesis from CO\(_2\)-rich syngas over a ZrO\(_2\) catalyst. Catal Today 115:222–227

    Article  CAS  Google Scholar 

  25. Yang R, Yu X, Zhang Y, Li W, Tsubaki N (2008) A new method of low-temperature methanol synthesis on \(\rm Cu/ZnO/Al_2O_3\) catalysts from CO/CO\(_2\)/H\(_2\). Fuel 87:443–450

    Article  CAS  Google Scholar 

  26. Zhang Y, Yang R, Tsubaki N (2008) A new low-temperature methanol synthesis method: mechanistic and kinetic study of catalytic process. Catal Today 132:93–100

    Article  CAS  Google Scholar 

  27. Diez-Ramirez J, Sanchez P, Kyriakou V, Zafeiratos S, Marnellos GE, Konsolakis M, Dorado F (2017) Effect of support nature on the cobalt-catalyzed CO2 hydrogenation. J CO2 Util 21:562–571

    Article  CAS  Google Scholar 

  28. Hu B, Uin Y, Liu G, Chen S, Hong X, Tsang SCE (2018) Hydrogen spillover enabled active Cu sites for methanol synthesis from CO\(_2\) hydrogenation over Pd doped CuZn catalysts. J Catal 159:17–26

    Article  Google Scholar 

  29. Fujitani T, Nakamura I, Uchijima T, Nakamura J (1997) The kinetics and mechanism of methanol synthesis by hydrogenation of CO\(_2\) over a Zn-deposited Cu(111) surface. Surf Sci 383:285–298

    Article  CAS  Google Scholar 

  30. Ostrovskii VE (2002) Mechanisms of methanol synthesis from hydrogen and carbon oxides at Cu-Zn-containing catalysts in the context of some fundamental problems of heterogeneous catalysis. Catal Today 77:141–160

    Article  CAS  Google Scholar 

  31. Bradford MCJ, Konduru MV, Fuentes DX (2003) Preparation, characterization and application of Cr2O3/ZnO catalysts for methanol synthesis. Fuel Process Technol 83:11–25

    Article  CAS  Google Scholar 

  32. Rozovskii AY, Lin GI (2003) Fundamentals of methanol synthesis and decomposition. Topics Catal 22:137–150

    Article  CAS  Google Scholar 

  33. Wilkinson SK, van de Water LGA, Miller B, Simmons MJH, Stitt E, Watson MJ (2016) Understanding the generation of methanol synthesis and water gas shift activity over copper-based catalysts—a spatially resolved experimental kinetic study using steady and non-steady state operation under CO/CO\(_2\)/H\(_2\) feeds. J Catal 337:208–220

    Article  Google Scholar 

  34. Lange JP (2001) Methanol synthesis: a short review of technology improvements. Catal Today 64:3–8

    Article  CAS  Google Scholar 

  35. Saito M, Takeuchi M, Watanabe T, Toyir J, Luo S, Wu J (1997) Methanol synthesis from CO2 and H2 over a Cu/ZnO-based multicomponent catalyst. Energy Convers Manage 38:S403–S408

    Article  CAS  Google Scholar 

  36. Gorban AN, Sargsyan HP, Wahab HA (2011) Quasichemical models of multicomponent nonlinear diffusion. Math Model Nat Phenom 6:184–262

    Article  Google Scholar 

  37. Samarskii AA (2001) The theory of difference schemes. Marcel Dekker, New York

    Book  Google Scholar 

  38. Čiegis R, Katauskis P, Skakauskas V (2018) The robust finite volume schemes for modelling non-classical surface reactions. Nonlinear Anal Model Control 23:234–250

    Article  Google Scholar 

  39. Hundsdorfer W, Verwer JG (2003) Numerical solution of time-dependent advection-diffusion-reaction equations, vol 3. Springer series in computational mathematics. Springer, Berlin

    Book  Google Scholar 

  40. Lesley MW, Schmidt LD (1985) The NO+CO reaction on Pt(100). Surf Sci 155:215–240

    Article  CAS  Google Scholar 

  41. Zemlyanov DY, Smirnov MY, Gorodetskii VV (1994) NO adsorption on reconstructed and unreconstructed Pt(100) surface at 300 K TDS studies. Reac Kinet Cat Lett 53:87–95

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Council of Lithuania (Project No. S-MIP-17-65).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranas Katauskis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skakauskas, V., Katauskis, P. Modelling carbon monoxide conversion into methanol over supported catalysts. Reac Kinet Mech Cat 130, 103–116 (2020). https://doi.org/10.1007/s11144-020-01768-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01768-x

Keywords

Navigation