Skip to main content
Log in

Understanding the role of surface Lewis acid sites of Sn modified Pd/Al2O3 catalyst in the chemoselective reductive N-acetylation of nitrobenzene

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

N-Aryl acetamides synthesis from the corresponding nitro compounds via a reductive N-acetylation was achieved over Pd supported on Sn modified Al2O3 catalyst using H2, acetic anhydride as acetylating agent in aqueous media at ambient temperature. The pyridine-IR data demonstrated a majority of Lewis acid sites compared to Brønsted acid sites on the catalyst surface. Pyridine-IR and CO pulse chemisorption results emphasized a combination of surface palladium in conjunction with Lewis acid sites were responsible for the high activity of 2wt%Pd/5wt%Sn–Al2O3 over 2wt%Pd/Al2O3 catalyst with consistent activity and selectivity for four recycles. The bulk and surface properties of the catalysts were characterized by BET-SA, XRD, XPS, TPD of NH3, H2-TPR, CO pulse chemisorption, TEM and the promotional effect of surface Lewis acid sites are rationalized by in situ pyridine adsorbed DRIFT spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Scheme 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Yang S, Li B, Wan X, Shi Z (2007) J Am Chem Soc 129:6066–6067

    Article  CAS  Google Scholar 

  2. Watanabe Y, Tsuji Y, Kondo T, Takeuchi R (1984) J Org Chem 49:4451–4455

    Article  CAS  Google Scholar 

  3. Scriven EFV, Turnbull K (1988) Chem Rev 88:297–368

    Article  CAS  Google Scholar 

  4. Lee SY, Lee CW, Oh DY (1999) J Org Chem 64:7017–7022

    Article  CAS  Google Scholar 

  5. Wang B, Jiang C, Qian J, Zhang S, Jia X, Yuan Y (2018) Org Biomol Chem 16:101–107

    Article  CAS  Google Scholar 

  6. Beckett AH, Daisley RW, Walker J (1968) Tetrahedron 24:6093–6109

    Article  CAS  Google Scholar 

  7. Koletzel MC, Herzog HL (1950) J Org Chem 15:370–373

    Article  Google Scholar 

  8. Kim BH, Han R, Piao F, Jun YM, Baik W, Lee BM (2003) Tetrahedron lett 44:77–79

    Article  CAS  Google Scholar 

  9. Zand Z, Kazemi F, Partovi A (2015) J Photochem Photobiol B 152:58–62

    Article  CAS  Google Scholar 

  10. Shokri Z, Zeynizadeh B, Hosseini SA (2017) J Colloid Interface Sci 485:99–105

    Article  CAS  Google Scholar 

  11. Rahaim RJ, Maleczka RE (2006) Synthesis 19:3316–3340

    Google Scholar 

  12. Kantam ML, Reddy RS, Srinivas K, Chakravarti R, Sreedhar B, Figueras F, Reddy CV (2012) J Mol Catal A Chem 355:96–101

    Article  CAS  Google Scholar 

  13. Nahmed EM, Jenner G (1991) Tetrahedron Lett 32:4917–4920

    Article  CAS  Google Scholar 

  14. Landesberg JM, Katz L, Olsen C (1972) J Org Chem 37:930–936

    Article  CAS  Google Scholar 

  15. Benedetti A, Fagherazzi G, Pinna F, Rampazzo G, Selva M, Strukul G (1991) Catal Lett 10:215–223

    Article  CAS  Google Scholar 

  16. Du W, Mackenzie KE, Milano FD, Deskins NA, Su D, Teng X (2012) ACS Catal 2:287–297

    Article  CAS  Google Scholar 

  17. Collins G, Blomker M, Osiak M, Holmes JD, Bredol M, O’Dwyer C (2013) Chem Mater 25:4312–4320

    Article  CAS  Google Scholar 

  18. Tong DS, Zhou CH, Li MY, Yu WH, Beltramini J, Lin CX, Xu ZP (2010) Appl Clay Sci 48:569–574

    Article  CAS  Google Scholar 

  19. Haan JL, Stafford KM, Masel RI (2010) J Phys Chem C 114:11665–11672

    Article  CAS  Google Scholar 

  20. Sa J, Gasparovicova D, Hayek K, Halwax E, Anderson JA, Vinek H (2005) Catal Lett 105:209–217

    Article  CAS  Google Scholar 

  21. Kobayashi S, Manabe K (2002) Acc Chem Res 35:209–217

    Article  CAS  Google Scholar 

  22. He S, Sun C, Bai Z, Dai X, Wang B (2009) Appl Catal A Gen 356:88–98

    Article  CAS  Google Scholar 

  23. Vishali B, Venu B, Kumar VV, Naresh G, Sudhakar M, Venugopal A (2017) J Phys Chem C 121:22191–22198

    Article  Google Scholar 

  24. Burch R (1981) J Catal 71:348–359

    Article  CAS  Google Scholar 

  25. Knozinger H, Ratnasamy P (1978) Catal Rev 17:31–70

    Article  Google Scholar 

  26. Scotti N, Dangate M, Gervasini A, Evangelisti C, Ravasio N, Zaccheria F (2014) ACS Catal 4:2818–2826

    Article  CAS  Google Scholar 

  27. Venu B, Vishali B, Kumar VV, Naresh G, Sreedhar I, Venugopal A (2018) Mol Catal 445:43–51

    Article  Google Scholar 

  28. Fondell M, Gorgoi M, Boman M, Lindblad A (2014) J Electron Spectrosc Relat Phenom 195:195–199

    Article  CAS  Google Scholar 

  29. Aytam HP, Akula V, Janmanchi K, Kamaraju SRR, Panja KR (2002) J Phys Chem B 106:1024–1031

    Article  CAS  Google Scholar 

  30. Gao Y, Ma D, Wang C, Guana J, Bao X (2011) Chem Commun 47:2432–2434

    Article  CAS  Google Scholar 

  31. Li H, Zhao Q, Wan Y, Dai W, Qiao M (2006) J Catal 244:251–254

    Article  CAS  Google Scholar 

  32. Mahata N, Cunha AF, Orfao JJM, Figueiredo JL (2008) Appl Catal A Gen 351:204–209

    Article  CAS  Google Scholar 

  33. Serna P, Lopez-Haro M, Calvino JJ, Corma A (2009) J Cata 263:328–334

    Article  CAS  Google Scholar 

Download references

Acknowledgements

BS thank UGC New Delhi for the award of fellowship. There is no conflict of interest pertaining to the results presented in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venugopal Akula.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7657 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilakanti, V., Gutta, N., Velisoju, V.K. et al. Understanding the role of surface Lewis acid sites of Sn modified Pd/Al2O3 catalyst in the chemoselective reductive N-acetylation of nitrobenzene. Reac Kinet Mech Cat 130, 347–362 (2020). https://doi.org/10.1007/s11144-020-01765-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01765-0

Keywords

Navigation