Reaction Kinetics, Mechanisms and Catalysis

, Volume 128, Issue 1, pp 395–412 | Cite as

Preparation of highly selective and stable Cu–Mg–Fe catalyst and its catalytic performance for one-step synthesis of 2-ethylhexanol from n-butyraldehyde

  • Shuang Miao
  • Hualiang An
  • Xinqiang ZhaoEmail author
  • Yanji Wang


A Cu–Mg–Fe catalyst was prepared by a coprecipitation–impregnation method and some influential factors such as Cu/Fe molar ratio, Mg/Fe molar ratio, calcination temperature and reduction temperature were investigated by means of XRD, XPS, NH3(or CO2)-TPD, H2-TPR and SEM analyses. Suitable preparation conditions were obtained as follows: a Cu/Mg/Fe ratio of 1:2:1, a calcination temperature of 550 °C, and a reduction temperature of 450 °C. The Cu–Mg–Fe catalyst showed a high catalytic performance for one-step synthesis of 2-ethylhexanol from n-butyraldehyde; the yield and selectivity of 2-ethylhexanol were 68.6% and 72.4% while the overall selectivity of C8 + C4 products was greatly improved to 96.9% under suitable reaction conditions.


Cu–Mg–Fe catalyst n-Butyraldehyde Aldol condensation Hydrogenation One-step synthesis 2-Ethylhexanol 



This work was supported by National Natural Science Foundation of China (Grant No. 21476058), Basic Research Program of Hebei Province for Natural Science Foundation and Key Basic Research Project (18964308D) and Natural Science Foundation of Hebei province (Grant No. B2018202220).

Supplementary material

11144_2019_1649_MOESM1_ESM.doc (3.2 mb)
Supplementary material 1 (DOC 3335 kb)


  1. 1.
    Zhao LL, Wang Y, An HL, Zhao XQ, Wang YJ (2018) Catal Commun 103:74–77CrossRefGoogle Scholar
  2. 2.
    Li Y, Liu XH, An HL, Zhao XQ, Wang YJ (2017) J Chem Ind Eng 68:1381–1389Google Scholar
  3. 3.
    Miao S, An HL, Zhao XQ, Wang YJ (2018) Reac Kinet Mech Cat 125:773–788CrossRefGoogle Scholar
  4. 4.
    Srivastava VK, Sharma SK, Shukla RS, Jasra RV (2006) Catal Commun 7:879–884CrossRefGoogle Scholar
  5. 5.
    Sharma SK, Srivastava VK, Shukla RS, Parikh PA, Jasra RV (2007) New J Chem 31:277–286CrossRefGoogle Scholar
  6. 6.
    Srivastava VK, Sharma SK, Shukla RS, Jasra RV (2008) Ind Eng Chem Res 47:3795–3803CrossRefGoogle Scholar
  7. 7.
    Sharma SK, Shukla RS, Parikh PA, Jasra RV (2009) J Mol Catal A 304:33–39CrossRefGoogle Scholar
  8. 8.
    Liang N, Zhang XL, An HL, Zhao XQ, Wang YJ (2015) Green Chem 17:2959–2972CrossRefGoogle Scholar
  9. 9.
    Zhao LL, An HL, Zhao XQ, Wang YJ (2017) ACS Catal 7:4451–4461CrossRefGoogle Scholar
  10. 10.
    Di Cosimo JI, Dı́ez VK, Xu M, Apesteguı́a CR (1998) J Catal 178:499–510CrossRefGoogle Scholar
  11. 11.
    Stošić D, Hosoglu F, Bennici S, Travert A, Capron M, Dumeignil F, Couturier JL, Dubois JL (2017) Catal Commun 89:14–18CrossRefGoogle Scholar
  12. 12.
    Zhao L, Duan J, Yang S, Li X, Liu Q, Martyniuk CJ (2018) Sep Purif Technol 207:231–239CrossRefGoogle Scholar
  13. 13.
    Rosset M, Perez-Lopez OW (2018) Reaction Kinetics. Mechanisms and Catalysis 123:689–705Google Scholar
  14. 14.
    Rosset M, Perez-Lopez OW (2019) Reac Kinet Mech Cat 126:497–511CrossRefGoogle Scholar
  15. 15.
    Chmielarz L, Węgrzyn A, Wojciechowska M, Witkowski S, Michalik M (2011) Catal Lett 141:1345–1354CrossRefGoogle Scholar
  16. 16.
    Gao W, Zhao Y, Liu J, Huang Q, He S, Li C, Zhao J, Wei M (2013) Catal Sci Technol 3:1324–1332CrossRefGoogle Scholar
  17. 17.
    Han X, Fang K, Zhou J, Sun Y (2016) J Colloid Interface Sci 470:162–171CrossRefGoogle Scholar
  18. 18.
    Fu M, Chen L, Chen S (2005) Chem J Chin Univ 26:2279–2283Google Scholar
  19. 19.
    Denmark S, Beutner G (2008) Angew Chem 47:1560–1638CrossRefGoogle Scholar
  20. 20.
    Nagaraja BM, Padmasri AH, Raju BD, Rao KSR (2007) J Mol Catal A 265:90–97CrossRefGoogle Scholar
  21. 21.
    Chagas LH, Carvalho GSGD, Carmo WRD, San Gil RAS, Chiaro SSX, Leitão AA, Diniz R, De Sena LA, Achete CA (2015) Mater Res Bull 64:207–215CrossRefGoogle Scholar
  22. 22.
    Biabani-Ravandi A, Rezaei M, Fattah Z (2013) Chem Eng J 219:124–130CrossRefGoogle Scholar
  23. 23.
    Hu B, Yin Y, Liu G, Chen S, Hong X, Tsang SCE (2018) J Catal 359:17–26CrossRefGoogle Scholar
  24. 24.
    Volgmann K, Voigts F, Maus-Friedrichs W (2010) Surf Sci 604:906–913CrossRefGoogle Scholar
  25. 25.
    Ma L, Wiame F, Maurice V, Marcus P (2018) Corros Sci 140:205–216CrossRefGoogle Scholar
  26. 26.
    Yamashita T, Hayes P (2008) Appl Surf Sci 254:2441–2449CrossRefGoogle Scholar
  27. 27.
    Maslakov KI, Teterin YA, Stefanovsky SV, Kalmykov SN, Teterin YA, Teterin YA, Danilov SS (2018) J Non-Cryst Solids 482:23–29CrossRefGoogle Scholar
  28. 28.
    Reyes P, Rojas H, Fierro LG (2003) J Mol Catal A 203:203–211CrossRefGoogle Scholar
  29. 29.
    Li Y, Liu X, An H, Zhao X, Wang Y (2017) Chin J Chem Eng 68:1381–1389Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and TechnologyHebei University of TechnologyTianjinChina

Personalised recommendations