Reaction Kinetics, Mechanisms and Catalysis

, Volume 128, Issue 1, pp 251–269 | Cite as

Ni/Al2O3-La2O3 catalysts synthesized by a one-step polymerization method applied to the dry reforming of methane: effect of precursor structures of nickel, perovskite and spinel

  • Camylla K. S. Silva
  • Eduardo P. Baston
  • Lisbeth Z. Melgar
  • Jorge D. A. BellidoEmail author


Ni catalysts supported on alumina with various lanthanum contents were prepared by the one-step polymerization method to form catalytic precursors that allow better dispersion of the active nickel metal and improve the Ni-La interaction in catalysts containing Ni, Al and La. The characterization of the materials was performed by XRD analysis, N2 adsorption–desorption, H2-temperature programmed reduction, CO2 and H2-temperature programmed desorption and scanning electron microscopy. The catalytic tests were conducted over a period of 6 h and with a stoichiometric ratio of CH4:CO2 equal to 1. The addition of lanthanum in the catalysts led to the formation of LaNiO3 and LaAlO3 perovskites, with a significant reduction of the specific surface area. The catalysis without the presence of lanthanum (NiAl) presented higher methane conversion during the catalytic test but the NiAlLa0.5 catalyst showed highest catalytic activity when considered the number of active sites exposed for reaction. In addition, it was observed that the formation of LaNiO3 perovskite reduces the sintering of the active phase, increasing the degree of dispersion of the catalysis and provides better Ni-La interaction in dry reforming of methane.


Syngas Perovskite Reforming Nickel Coke 



We are grateful to CNPq (Process No. 485252/2013-9) and FAPEMIG (Process No. APQ-03361-15) for the financial support.


  1. 1.
    Li X, Ke J, Wang J, Liang C, Kang M, Zhao Y, Li Q (2018) A new amino-alcohol originated from carbon dioxide and its application as chain extender in the preparation of polyurethane. J CO2 Util 26:52–59CrossRefGoogle Scholar
  2. 2.
    Dixit RJ, Majumder CB (2018) CO2 capture and electro-conversion into valuable organic products: a batch and continuous study. J CO2 Util 26:80–92CrossRefGoogle Scholar
  3. 3.
    Barbarossa V, Vanga G, Viscardi R, Gattia DM (2014) CO2 as carbon source for fuel synthesis. Enrgy Procedia 45:1325–1329CrossRefGoogle Scholar
  4. 4.
    Bellido JDA, Souza JE, M’Peko JC, Assaf EM (2009) Effect of adding CaO to ZrO2 support on nickel catalyst activity in dry reforming of methane. Appl Catal A 358:215–223CrossRefGoogle Scholar
  5. 5.
    Li D, Xu S, Song K, Chen C, Jiang L (2018) Hydrotalcite-derived Co/Mg(Al)O as a stable and coke-resistant catalyst for low-temperature carbon dioxide reforming of methane. Appl Catal A 552:21–29CrossRefGoogle Scholar
  6. 6.
    Li D, Nakagawa Y, Tomishige K (2011) Methane reforming to synthesis gas over Ni catalysts modified with noble metals. Appl Catal A 408:1–24CrossRefGoogle Scholar
  7. 7.
    Romero A, Jobbágy M, Laborde M, Baronetti G, Amadeo N (2014) Ni(II)–Mg(II)–Al(III) catalysts for hydrogen production from ethanol steam reforming: influence of the Mg content. Appl Catal A 470:398–404CrossRefGoogle Scholar
  8. 8.
    Mazumder J, De Lasa H (2014) Fluidizable Ni/La2O3-Al2O3 catalyst for steam gasification of a cellulosic biomass surrogate. Appl Catal B 160–161:67–79CrossRefGoogle Scholar
  9. 9.
    Hossain MM, Lopez D, Herrera J, De Lasa HI (2009) Nickel on lanthanum-modified γ-Al2O3 oxygen carrier for CLC: reactivity and stability. Catal Today 143:179–186CrossRefGoogle Scholar
  10. 10.
    Navarro RM, Alvarez-Galvána MC, Sánchez-Sánchez MC, Rosa F, Fierro JLG (2005) Production of hydrogen by oxidative reforming of ethanol over Pt catalysts supported on Al2O3 modified with Ce and La. Appl Catal B 55:229–241CrossRefGoogle Scholar
  11. 11.
    Świrk K, Motak M, Grzybek T, Rønning M, Da Costa P (2019) Effect of low loading of yttrium on Ni-based layered double hydroxides in CO2 reforming of CH4. React Kinet Mech Cat 126:611–628CrossRefGoogle Scholar
  12. 12.
    Ojeda-Niño OH, Gracia F, Daza C (2019) Role of Pr on Ni-Mg-Al mixed oxides synthesized by microwave-assisted self-combustion for dry reforming of methane. Ind Eng Chem Res 58:7909–7921CrossRefGoogle Scholar
  13. 13.
    Natesakhawat S, Oktar O, Ozkan US (2005) Effect of lanthanide promotion on catalytic performance of sol–gel Ni/Al2O3 catalysts in steam reforming of propane. J Mol Catal A 241:133–146CrossRefGoogle Scholar
  14. 14.
    Tsoukalou A, Imtiaz Q, Kim SM, Abdala PM, Yoon S, Müller CR (2016) Dry-reforming of methane over bimetallic Ni–M/La2O3 (M = Co, Fe): the effect of the rate of La2O2CO3 formation and phase stability on the catalytic activity and stability. J Catal 343:208–214CrossRefGoogle Scholar
  15. 15.
    Tsipouriari VA, Verykios XE (1999) Carbon and oxygen reaction pathways of CO2 reforming of methane over Ni/La2O3 and Ni/Al2O3 catalysts studied by isotopic tracing techniques. J Catal 187:85–94CrossRefGoogle Scholar
  16. 16.
    Xu J, Zhou W, Wang J, Li Z, Ma J (2009) Characterization and analysis of carbon deposited during the dry reforming of methane over Ni/La2O3/Al2O3 catalysts. Chin J Catal 30:1076–1084CrossRefGoogle Scholar
  17. 17.
    Yang R, Xing C, Lv C, Shi L, Tsubaki N (2010) Promotional effect of La2O3 and CeO2 on Ni/γ-Al2O3 catalysts for CO2 reforming of CH4. Appl Catal A 385:92–100CrossRefGoogle Scholar
  18. 18.
    Xu Z, Li Y, Zhang J, Chang L, Zhou R, Duan Z (2001) Ultrafine NiO–La2O3–Al2O3 aerogel: a promising catalyst for CH4/CO2 reforming. Appl Catal A 213:65–71CrossRefGoogle Scholar
  19. 19.
    Cui Y, Zhang H, Xu H, Li W (2007) The CO2 reforming of CH4 over Ni/La2O3/α-Al2O3 catalysts: the effect of La2O3 contents on the kinetic performance. Appl Catal A 331:60–69CrossRefGoogle Scholar
  20. 20.
    Gallego GS, Mondragón F, Barrault J, Tatiboue JM, Batiot-Dupeyrat C (2006) CO2 reforming of CH4 over La–Ni based perovskite precursors. Appl Catal A 311:164–171CrossRefGoogle Scholar
  21. 21.
    Arai H, Machida M (1996) Thermal stabilization of catalyst supports and their application to high-temperature catalytic combustion. Appl Catal A 138:161–176CrossRefGoogle Scholar
  22. 22.
    Su YJ, Kl Pan, Chang MB (2014) Modifying perovskite-type oxide catalyst LaNiO3 with Ce for carbon dioxide reforming of methane. Int J Hydrog Energy 39:4917–4925CrossRefGoogle Scholar
  23. 23.
    Hernandez D, Velasquez M, Ayrault P, Lopez D, Fernandez JJ, Santamaria A, Batiot-Dupeyrat C (2013) Gas phase glycerol conversion over lanthanum based catalysts: LaNiO3 and La2O3. Appl Catal A 467:315–324CrossRefGoogle Scholar
  24. 24.
    Da Silva CA, De Miranda PEV (2015) Synthesis of LaAlO3 based materials for potential use as methane-fueled solid oxide fuel cell anodes. Int J Hydrog Energy 40:10002–10015CrossRefGoogle Scholar
  25. 25.
    Zygmuntowicz J, Wiecinska P, Miazga A, Konopka K (2016) Characterization of composites containing NiAl2O4 spinel phase from Al2O3/NiO and Al2O3/Ni systems. J Therm Anal Calorim 125:1079–1086CrossRefGoogle Scholar
  26. 26.
    Kathiraser Y, Thitsartarn W, Sutthiumporn K, Kawi S (2013) Inverse NiAl2O4 on LaAlO3–Al2O3: unique catalytic structure for stable CO2 reforming of methane. J Phys Chem C 117:8120–8130CrossRefGoogle Scholar
  27. 27.
    Meshkani F, Golesorkh SF, Rezaei M, Andache M (2017) Nickel catalyst supported on mesoporous MgAl2O4 nanopowders synthesized via a homogenous precipitation method for dry reforming reaction. Res Chem Intermed 43:545–559CrossRefGoogle Scholar
  28. 28.
    López-Fonseca R, Jiménez-González C, De Rivas B, Gutiérrez-Ortiz JI (2012) Partial oxidation of methane to syngas on bulk NiAl2O4catalyst. Comparison with alumina supported nickel, platinum and rhodium catalysts. Appl Catal A 437–438:53–62CrossRefGoogle Scholar
  29. 29.
    Asencios YJO, Elias KFM, Assaf EM (2014) Oxidative-reforming of model biogas over NiO/Al2O3 catalysts: the influence of the variation of support synthesis conditions. Appl Surf Sci 317:350–359CrossRefGoogle Scholar
  30. 30.
    Jiménez-González C, Boukha Z, De Rivas B, Delgado JJ, Cauqui MA, González-Velasco JR, Gutiérrez-Ortiz JI, López-Fonseca R (2013) Structural characterisation of Ni/alumina reforming catalysts activated at high temperatures. Appl Catal A 466:9–20CrossRefGoogle Scholar
  31. 31.
    Yang R, Li X, Wu J, Zhang X, Zhang Z, Cheng Y, Guo J (2009) Hydrotreating of crude 2-ethylhexanol over Ni/Al2O3catalysts: surface Ni species-catalytic activity correlation. Appl Catal A 368:105–112CrossRefGoogle Scholar
  32. 32.
    Yang EH, Kim NY, Noh Y, Lim SS, Jung JS, Lee JS, Hong GH, Moon DJ (2015) Steam CO2 reforming of methane over La1−xCexNiO3perovskite catalysts. Int J Hydrog Energy 40:11831–11839CrossRefGoogle Scholar
  33. 33.
    Slagtern A, Olsbye U, Blom R, Dahl IM, Fjellvag H (1996) In situ XRD characterization of La-Ni-Al-O model catalysts for CO2 reforming of methane. Appl Catal A 145:375–388CrossRefGoogle Scholar
  34. 34.
    Batiot-Dupeyrat C, Valderrama G, Meneses A, Martinez F, Barrault J, Tatibouet JM (2003) Pulse study of CO2 reforming of methane over LaNiO3. Appl Catal A 248:143–151CrossRefGoogle Scholar
  35. 35.
    Bellido JDA, Assaf EM (2009) Effect of the Y2O3-ZrO2 support composition on nickel catalyst evaluated in dry reforming of methane. Appl Catal A 352:179–187CrossRefGoogle Scholar
  36. 36.
    Zhang L, Lian J, Li L, Peng C, Liu W, Xu X, Fang X, Wang Z, Wang X, Peng H (2018) LaNiO3 nanocube embedded in mesoporous silica for dry reforming of methane with enhanced coking resistance. Microporous Mesoporous Mat 266:189–197CrossRefGoogle Scholar
  37. 37.
    Mazumder J, De Lasa HI (2014) Ni catalysts for steam gasification of biomass: effect of La2O3 loading. Catal Today 237:100–110CrossRefGoogle Scholar
  38. 38.
    Coleman LJI, Epling W, Hudgins RR, Croiset E (2009) Ni/Mg–Al mixed oxide catalyst for the steam reforming of ethanol. Appl Catal A 363:52–63CrossRefGoogle Scholar
  39. 39.
    Morais Batista AH, Ramos FSO, Braga TP, Lima CL, Sousa FF, Barros EBD, Filho JM, Oliveira AS, Sousa JR, Valentini A, Oliveira AC (2010) Mesoporous MAl2O4 (M = Cu, Ni, Fe or Mg) spinels: characterisation and application in the catalytic dehydrogenation of ethylbenzene in the presence of CO2. Appl Catal A 382:148–157CrossRefGoogle Scholar
  40. 40.
    Song F, Zhong Q, Yu Y, Shi M, Wu Y, Hu J, Song Y (2017) Obtaining well-dispersed Ni/Al2O3 catalyst for CO2 methanation with a microwave-assisted method. Int J Hydrog Energy 42:4174–4183CrossRefGoogle Scholar
  41. 41.
    Zhang L, Wang X, Chen C, Zou X, Ding W, Lu X (2017) Dry reforming of methane to syngas over lanthanum-modified mesoporous nickel aluminate/γ-alumina nanocomposites by one-pot synthesis. Int J Hydrog Energy 42:11333–11345CrossRefGoogle Scholar
  42. 42.
    Boukha Z, Fitian L, López-Haro M, Mora M, Ruiz JR, Jiménez-Snachidrián C, Blanco G, Calvino JJ, Cifredo GA, Trasobares S, Bernal S (2010) Influence of the calcination temperature on the nano-structural properties, surface basicity, and catalytic behavior of alumina-supported lanthana samples. J Catal 272:121–130CrossRefGoogle Scholar
  43. 43.
    Velu S, Gangwal SK (2006) Synthesis of alumina supported nickel nanoparticle catalysts and evaluation of nickel metal dispersions by temperature programmed desorption. Solid State Ion 177:803–811CrossRefGoogle Scholar
  44. 44.
    Mihet M, Lazar MD (2018) Methanation of CO2 on Ni/γ-Al2O3: influence of Pt, Pd or Rh promotion. Catal Today 306:294–299CrossRefGoogle Scholar
  45. 45.
    Argyle M, Bartholomew CH (2015) Heterogeneous catalyst deactivation and regeneration: a review. Catalysts 5:145–269CrossRefGoogle Scholar
  46. 46.
    Znak L, Stolecki K, Zielinski J (2005) The effect of cerium, lanthanum and zirconium on nickel/alumina catalysts for the hydrogenation of carbon oxides. Catal Today 101:65–71CrossRefGoogle Scholar
  47. 47.
    Bligaard T, Bullock RM, Campbell CT, Chen JG, Gates BC, Gorte RJ, Jones CW, Jones WD, Kitchin JR, Scott SL (2016) Toward benchmarking in catalysis science: best practices, challenges, and opportunities. ACS Catal 6:2590–2602CrossRefGoogle Scholar
  48. 48.
    Kim WY, Jang JS, Ra EC, Kim KY, Kim EH, Lee JS (2019) Reduced perovskite LaNiO3 catalysts modified with Co and Mn for low coke formation in dry reforming of methane. Appl Catal A 575:198–203CrossRefGoogle Scholar
  49. 49.
    Tao Q, Wang Z, Jayasundera B, Guo C, Gan Y, Zhang L, Lu Z, Tan H, Yan C (2018) Enhanced catalytic activity of Ni–Mo2C/La2O3–ZrO2 bifunctional catalyst for dry reforming of methane. J Mater Sci 53:14559–14572CrossRefGoogle Scholar
  50. 50.
    Råberg LB, Jensen MB, Olsbye U, Daniel C, Haag S, Mirodatos C, Sjåstad Olafsen (2007) A Propane dry reforming to synthesis gas over Ni-based catalysts: influence of support and operating parameters on catalyst activity and stability. J Catal 249:250–260CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Departamento de Engenharia QuímicaUniversidade Federal de São João del-ReiOuro BrancoBrazil

Personalised recommendations