Skip to main content
Log in

Adsorption of phenol from cigarette smoke using CoAPO-11

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this paper, the cobalt-substituted aluminophosphate CoAPO-11 was prepared and utilized for the adsorption of phenol in cigarette smoke. XRD, XPS, SEM, TPD and N2-sorption results suggested that the product possessed highly crystallized AEL topology with mesoporous structure, and the existence of Co in the framework provided acid sites and base sites to the sample. The adsorption kinetic data were modeled through the pseudo-first-order and pseudo-second-order kinetic equations using linear and non-linear methods, and the result demonstrated that the adsorption character of phenol on CoAPO-11 obeyed the pseudo-second-order kinetic model and the adsorption process occurred via film and intra-particle diffusion. The CoAPO-11’s adsorption capacity for phenol was generally positively correlated with its specific surface area and pore volume, and it could reduce the content of phenol in the cigarette smoke by 23%. In addition, it was effective for reducing HCN and croton aldehyde, which evidenced it an excellent multifunctional adsorbent for cigarette smoke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang M, Huang Y, Cao H, Lin Y, Cheng X, Wang X (2016) A novel polymeric adsorbent by a self-doped manner: synthesis, characterization, and adsorption performance to phenol from aqueous solution. Polym Bull 73(8):2321–2341

    Article  CAS  Google Scholar 

  2. Ahmaruzzaman M (2008) Adsorption of phenolic compounds on low-cost adsorbents: a review. Adv Colloid Interface Sci 143(1):48–67

    Article  CAS  PubMed  Google Scholar 

  3. Huang JH, Huang KL, Wang AT, Yang Q (2008) Adsorption characteristics of poly(styrene-co-divinylbenzene) resin functionalized with methoxy and phenoxy groups for phenol. J Colloid Interface Sci 327(2):302–307

    Article  CAS  PubMed  Google Scholar 

  4. Wilson ST, Lok BM, Messina CA, Cannan TR, Flanigen EM (1982) Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. J Am Chem Soc 104(4):1146–1147

    Article  CAS  Google Scholar 

  5. Jhung SH, Kim HK, Woong Yoon J, Chang JS (2006) Low-temperature adsorption of hydrogen on nanoporous aluminophosphates: effect of pore size. J Phys Chem B 110(19):9371–9374

    Article  CAS  PubMed  Google Scholar 

  6. Yang C, Jiang L, Wang H, Zheng Y, Wang Y (2018) Process optimization for selective hydrogenation of α-pinene over Ni/AlPO4. Korean J Chem Eng 35(2):409–420

    Article  CAS  Google Scholar 

  7. Chatterjee S, Bhanja P, Paul L, Ali M, Bhaumik A (2017) MnAPO-5 as an efficient heterogeneous catalyst for selective liquid phase partial oxidation reactions. Dalton Trans 47(3):791–798

    Article  Google Scholar 

  8. Zhao X, Zhang X, Hao Z, Gao X, Liu Z (2018) Synthesis of FeAPO-5 molecular sieves with high iron contents via improved ionothermal method and their catalytic performances in phenol hydroxylation. J Porous Mater 25(4):1007–1016

    Article  CAS  Google Scholar 

  9. Das SK, Bhunia MK, Bhaumik A (2012) Solvothermal synthesis of mesoporous aluminophosphate for polluted water remediation. Microporous Mesoporous Mater 155:258–264

    Article  CAS  Google Scholar 

  10. Dai P-SE, Petty RH, Ingram CW, Szostak R (1996) Metal substituted aluminophosphate molecular sieves as phenol hydroxylation catalysts. Appl Catal A 143(1):101–110

    Article  CAS  Google Scholar 

  11. Li J, Tan Y, Zhang Q, Han Y (2010) Characterization of an HZSM-5/MnAPO-11 composite and its catalytic properties in the synthesis of high-octane hydrocarbons from syngas. Fuel 89(11):3510–3516

    Article  CAS  Google Scholar 

  12. Pan D, Wang Y, Zhong S, Jiang L (2017) Optimization of Ni-P/APO-11 amorphous catalyst for catalytic hydrogenation of turpentine using response surface methodology. CIESC J 68(6):2376–2385

    CAS  Google Scholar 

  13. Wang ZM, Yan ZF (2003) Skeletal isomerization of butene on Si, Zr-substituted aluminum phosphate zeolites. Acta Phys Chim Sin 19(3):216–220

    Google Scholar 

  14. Delgado JA, Agueda VI, Uguina MA, Sotelo JL, Fernandez P (2013) Adsorption and diffusion of nitrogen, methane and carbon dioxide in aluminophosphate molecular sieve AlPO4-11. Adsorption 19(2–4):407–422

    Article  CAS  Google Scholar 

  15. Carreon ML, Li S, Carreon MA (2012) AlPO-18 membranes for CO2/CH4 separation. Chem Commun 48(17):2310–2312

    Article  CAS  Google Scholar 

  16. Akhtar F, Keshavarzi N, Shakarova D, Cheung O, Hedin N, Bergstrom L (2014) Aluminophosphate monoliths with high CO2-over-N2 selectivity and CO2 capture capacity. RSC Adv 4(99):55877–55883

    Article  CAS  Google Scholar 

  17. Liu Q, Cheung NCO, Garcia-Bennett AE, Hedin N (2011) Aluminophosphates for CO2 separation. Chemsuschem 4(1):91–97

    Article  CAS  PubMed  Google Scholar 

  18. Kannan C, Muthuraja K, Devi MR (2013) Hazardous dyes removal from aqueous solution over mesoporous aluminophosphate with textural porosity by adsorption. J Hazard Mater 244–245(2):10–20

    Article  CAS  PubMed  Google Scholar 

  19. Muthuraja K, Kannan C (2013) Kinetic and isotherm studies of removal of metanil yellow dye on mesoporous aluminophosphate molecular sieves. Chem Sci Trans 2(S1):195–201

    Google Scholar 

  20. International Standard ISO 3308 Routine analytical cigarette-smoking machine—definitions and standard conditions

  21. Karim AH, Jalil AA, Triwahyono S, Sidik SM, Kamarudin NHN, Jusoh R, Jusoh NWC, Hameed BH (2012) Amino modified mesostructured silica nanoparticles for efficient adsorption of methylene blue. J Colloid Interface Sci 386(1):307–314

    Article  CAS  PubMed  Google Scholar 

  22. Salvestrini S (2018) Analysis of the Langmuir rate equation in its differential and integrated form for adsorption processes and a comparison with the pseudo first and pseudo second order models. React Kinet Mech Catal 123(2):455–472

    Article  CAS  Google Scholar 

  23. Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens Handlingar 24:1–39

    Google Scholar 

  24. Chang M-Y, Juang R-S (2004) Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. J Colloid Interface Sci 278(1):18–25

    Article  CAS  PubMed  Google Scholar 

  25. Ho YS, Mckay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  CAS  Google Scholar 

  26. Kavitha D, Namasivayam C (2007) Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresour Technol 98(1):14–21

    Article  CAS  Google Scholar 

  27. Doğan M, Alkan M, Türkyilmaz A, Ozdemir Y (2004) Kinetics and mechanism of removal of methylene blue by adsorption onto perlite. J Hazard Mater 109(1):141–148

    Article  CAS  PubMed  Google Scholar 

  28. Sheha RR, El-Zahhar AA (2008) Synthesis of some ferromagnetic composite resins and their metal removal characteristics in aqueous solutions. J Hazard Mater 150(3):795–803

    Article  CAS  Google Scholar 

  29. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. ASCE Sanit Eng Division J 1(2):1–2

    CAS  Google Scholar 

  30. Lente G (2015) Solving rate equations. In: Lente G (ed) Deterministic kinetics in chemistry and systems biology: the dynamics of complex reaction networks. Springer, Cham

    Chapter  Google Scholar 

  31. Kumar KV, Sivanesan S (2006) Isotherm parameters for basic dyes onto activated carbon: comparison of linear and non-linear method. J Hazard Mater 129(1):147–150

    Article  CAS  PubMed  Google Scholar 

  32. Miraboutalebi SM, Nikouzad SK, Peydayesh M, Allahgholi N, Vafajoo L, McKay G (2017) Methylene blue adsorption via maize silk powder: kinetic, equilibrium, thermodynamic studies and residual error analysis. Process Saf Environ Prot 106:191–202

    Article  CAS  Google Scholar 

  33. Boulinguiez B, Le Cloirec P, Wolbert D (2008) Revisiting the determination of langmuir parameters—application to tetrahydrothiophene adsorption onto activated carbon. Langmuir 24(13):6420–6424

    Article  CAS  PubMed  Google Scholar 

  34. Bahrudin NN, Nawi MA, Lelifajri (2019) Kinetics and isotherm modeling of phenol adsorption by immobilizable activated carbon. React Kinet Mech Catal 126(1):61–82

    Article  CAS  Google Scholar 

  35. Zhang G, Wang D, Feng P, Shi S, Wang C, Zheng A, Guang L, Tian Z (2017) Synthesis of zeolite beta containing ultra-small CoO particles for ethylbenzene oxidation. Chin J Catal 38(7):1207–1215

    Article  CAS  Google Scholar 

  36. Liu G, Yang L-X, Wu S-J, Jia M-J, Zhang W-X (2014) influence of acid-base properties of K-loaded aluminophosphate catalysts on their catalytic behavior in the O-methylation of catechol. Acta Phys Chim Sin 30(6):1163–1168

    CAS  Google Scholar 

  37. Khalfaoui M, Knani S, Hachicha MA, Lamine AB (2003) New theoretical expressions for the five adsorption type isotherms classified by BET based on statistical physics treatment. J Colloid Interface Sci 263(2):350–356

    Article  CAS  PubMed  Google Scholar 

  38. Zhao X, Gao X, Zhang X, Hao Z (2017) Solventless synthesis of AEL-type aluminophosphate molecular sieve from mechanochemically pretreated low-templated reactants. Microporous Mesoporous Mater 242:160–165

    Article  CAS  Google Scholar 

  39. Wang J, Song J, Yin C, Ji Y, Zou Y, Xiao F-S (2009) Tetramethylguanidine-templated synthesis of aluminophosphate-based microporous crystals with AFI-type structure. Microporous Mesoporous Mater 117(3):561–569

    Article  CAS  Google Scholar 

  40. Zhang S, Shao T, Kose HS, Karanfil T (2012) Adsorption kinetics of aromatic compounds on carbon nanotubes and activated carbons. Environ Toxicol Chem 31(1):79–85

    Article  CAS  PubMed  Google Scholar 

  41. Ren Y, Yan N, Feng J, Ma J, Wen Q, Li N, Dong Q (2012) Adsorption mechanism of copper and lead ions onto graphene nanosheet/δ-MnO2. Mater Chem Phys 136(2):538–544

    Article  CAS  Google Scholar 

  42. Kannan N, Sundaram MM (2001) Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dyes Pigments 51(1):25–40

    Article  CAS  Google Scholar 

  43. Bellér G, Bátki G, Lente G, Fábián I (2010) Unexpected adduct formation in the reaction of peroxomonosulfate ion with the tris-(2,2′-bipyridine)iron(II) and tris-(1,10-phenanthroline)iron(II) complexes. J Coord Chem 63(14–16):2586–2597

    Article  CAS  Google Scholar 

  44. Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83

    Article  Google Scholar 

  45. Khan TA, Khan EA, Shahjahan (2015) Removal of basic dyes from aqueous solution by adsorption onto binary iron-manganese oxide coated kaolinite: non-linear isotherm and kinetics modeling. Appl Clay Sci 107:70–77

    Article  CAS  Google Scholar 

  46. Kumar KV (2006) Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon. J Hazard Mater 137(3):1538–1544

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by research grants from the National Natural Science Foundation of China (Grant No. U1202265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaming Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Yang, C., Zheng, Q. et al. Adsorption of phenol from cigarette smoke using CoAPO-11. Reac Kinet Mech Cat 127, 1005–1023 (2019). https://doi.org/10.1007/s11144-019-01599-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01599-5

Keywords

Navigation