Reaction Kinetics, Mechanisms and Catalysis

, Volume 127, Issue 2, pp 637–652 | Cite as

Comparative study on transition element doped Mn–Zr–Ti-oxides catalysts for the low-temperature selective catalytic reduction of NO with NH3

  • Bolin Zhang
  • Shengen ZhangEmail author
  • Bo Liu


The effect of Cu, Fe, Co, Ni, Cr and Zn on Mn–Zr–Ti mixed oxides catalysts introduced by co-precipitation was investigated. The Mn–Co catalyst showed the highest NO conversion near 100% and a good N2 selectivity > 90% at 200–300 °C. Comparing with the Mn–non catalyst, the Mn–Co catalyst presented a higher reaction rate constant at 120 °C with 23.3 ml s−1 g−1. The Mn–Co catalyst possesses a high concentration of Mn4+ and surface labile oxygen, which should improve the redox property and increase catalytic activity. Additionally, the Mn–Co showed the highest ratio of Lewis acid sites. The resistance to SO2 was improved by incorporation of Co. In summary, the Mn–Zr–Ti mixed oxides catalyst have a better N2 selectivity than other Mn-based catalysts and could be improved by doping with Co.


SCR Mn Low-temperature N2 selectivity SO2 resistance 



This work is sponsored by National Natural Science Foundation of China (Grants U1360202, 51672024, 51472030 and 51502014) and Fundamental Research Funds for the Central Universities (2302017FRF-IC-17-005 and 2302017FRF-BR-17-005A).

Supplementary material

11144_2019_1586_MOESM1_ESM.docx (2.3 mb)
Supplementary material 1 (DOCX 2339 kb)


  1. 1.
    Zhou H, Su Y, Liao W, Deng W, Zhong F (2016) Fuel 182:352–360CrossRefGoogle Scholar
  2. 2.
    Jo S-H, Kim S, Kim H-D, Jeong B, Lee H (2018) Reac Kinet Mech Cat 125:733–742CrossRefGoogle Scholar
  3. 3.
    Shi R, Lin X, Zheng Z, Feng R, Liu Y, Ni L, Yuan B (2017) Reac Kinet Mech Cat 124:217–227CrossRefGoogle Scholar
  4. 4.
    Zhang S, Zhang B, Liu B, Sun S (2017) RSC Adv 7:26226–26242CrossRefGoogle Scholar
  5. 5.
    Li F, Xie J, Cui H, Gong P, He F (2018) Reac Kinet Mech Cat 125:647–661CrossRefGoogle Scholar
  6. 6.
    Xie C, Yang S, Shi J, Li B, Gao C, Niu C (2017) Chem Eng J 327:1–8CrossRefGoogle Scholar
  7. 7.
    Huang L, Hu X, Yuan S, Li H, Yan T, Shi L, Zhang D (2017) Appl Catal B 203:778–788CrossRefGoogle Scholar
  8. 8.
    Gao C, Shi J-W, Fan Z, Yu Y, Chen J, Li Z, Niu C (2017) Fuel Process Technol 167:322–333CrossRefGoogle Scholar
  9. 9.
    Thirupathi B, Smirniotis PG (2012) J Catal 288:74–83CrossRefGoogle Scholar
  10. 10.
    Deng S, Zhuang K, Xu B, Ding Y, Yu L, Fan Y (2016) Catal Sci Technol 6:1772–1778CrossRefGoogle Scholar
  11. 11.
    Zhang B, Zhang S, Liu B, Shen H, Li L (2018) RSC Adv 8:12733–12741CrossRefGoogle Scholar
  12. 12.
    Zhang B, Liebau M, Liu B, Li L, Zhang S, Gläser R (2019) J Mater Sci 54:6943–6960CrossRefGoogle Scholar
  13. 13.
    Wang H, Qu Z, Xie H, Maeda N, Miao L, Wang Z (2016) J Catal 338:56–67CrossRefGoogle Scholar
  14. 14.
    Peng Y, Li K, Li J (2013) Appl Catal B 140–141:483–492CrossRefGoogle Scholar
  15. 15.
    Chen Z, Yang Q, Li H, Li X, Wang L, Chi Tsang S (2010) J Catal 276:56–65CrossRefGoogle Scholar
  16. 16.
    Zamudio MA, Russo N, Fino D (2011) Ind Eng Chem Res 50:6668–6672CrossRefGoogle Scholar
  17. 17.
    Shen K, Zhang Y, Wang X, Xu H, Sun K, Zhou C (2013) J Energy Chem 22:617–623CrossRefGoogle Scholar
  18. 18.
    Zhou C, Zhang Y, Wang X, Xu H, Sun K, Shen K (2013) J Colloid Interface Sci 392:319–324CrossRefGoogle Scholar
  19. 19.
    Wang T, Sun K, Lu Z, Zhang Y (2010) Reac Kinet Mech Cat 101:153–161CrossRefGoogle Scholar
  20. 20.
    Casapu M, Kröcher O, Elsener M (2009) Appl Catal B 88:413–419CrossRefGoogle Scholar
  21. 21.
    Yang S, Qi F, Xiong S, Dang H, Liao Y, Wong PK, Li J (2016) Appl Catal B 181:570–580CrossRefGoogle Scholar
  22. 22.
    Kozuch S, Martin JML (2012) ACS Catal 2:2787–2794CrossRefGoogle Scholar
  23. 23.
    Lente G (2013) ACS Catal 3:381–382CrossRefGoogle Scholar
  24. 24.
    Bligaard T, Bullock RM, Campbell CT, Chen JG, Gates BC, Gorte RJ, Jones CW, Jones WD, Kitchin JR, Scott SL (2016) ACS Catal 6:2590–2602CrossRefGoogle Scholar
  25. 25.
    Zhang G, Han W, Zhao H, Zong L, Tang Z (2018) Appl Catal B 226:117–126CrossRefGoogle Scholar
  26. 26.
    Liu F, He H, Zhang C, Feng Z, Zheng L, Xie Y, Hu T (2010) Appl Catal B 96:408–420CrossRefGoogle Scholar
  27. 27.
    Gao R, Zhang D, Maitarad P, Shi L, Rungrotmongkol T, Li H, Zhang J, Cao W (2013) J Phys Chem C 117:10502–10511CrossRefGoogle Scholar
  28. 28.
    Boningari T, Pappas DK, Ettireddy PR, Kotrba A, Smirniotis PG (2015) Ind Eng Chem Res 54:2261–2273CrossRefGoogle Scholar
  29. 29.
    Qi G, Yang RT, Chang R (2004) Appl Catal B 51:93–106CrossRefGoogle Scholar
  30. 30.
    Gao G, Shi J-W, Fan Z, Gao C, Niu C (2017) Chem Eng J 325:91–100CrossRefGoogle Scholar
  31. 31.
    Cai S, Liu J, Zha K, Li H, Shi L, Zhang D (2017) Nanoscale 9:5648–5657CrossRefGoogle Scholar
  32. 32.
    Fang D, Xie J, Hu H, Yang H, He F, Fu Z (2015) Chem Eng J 271:23–30CrossRefGoogle Scholar
  33. 33.
    Gao F, Tang X, Yi H, Li J, Zhao S, Wang J, Chu C, Li C (2017) Chem Eng J 317:20–31CrossRefGoogle Scholar
  34. 34.
    Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Pure Appl Chem 87:1051–1069CrossRefGoogle Scholar
  35. 35.
    Deorsola FA, Andreoli S, Armandi M, Bonelli B, Pirone R (2016) Appl Catal A 522:120–129CrossRefGoogle Scholar
  36. 36.
    Li C, Tang X, Yi H, Wang L, Cui X, Chu C, Li J, Zhang R, Yu Q (2018) Appl Surf Sci 428:924–932CrossRefGoogle Scholar
  37. 37.
    Wang X, Cheng J, Wang X, Shi Y, Chen F, Jing X, Wang F, Ma Y, Wang L, Ning P (2018) Chem Eng J 333:402–413CrossRefGoogle Scholar
  38. 38.
    Tang X, Li C, Yi H, Wang L, Yu Q, Gao F, Cui X, Chu C, Li J, Zhang R (2018) Chem Eng J 333:467–476CrossRefGoogle Scholar
  39. 39.
    Yu L, Zhong Q, Deng Z, Zhang S (2016) J Mol Catal A Chem 423:371–378CrossRefGoogle Scholar
  40. 40.
    Gao F, Tang X, Yi H, Zhao S, Wang J, Shi Y, Meng X (2018) Appl Surf Sci 443:103–113CrossRefGoogle Scholar
  41. 41.
    Boningari T, Ettireddy PR, Somogyvari A, Liu Y, Vorontsov A, McDonald CA, Smirniotis PG (2015) J Catal 325:145–155CrossRefGoogle Scholar
  42. 42.
    Li X, Li J, Peng Y, Chang H, Zhang T, Zhao S, Si W, Hao J (2016) Appl Catal B 184:246–257CrossRefGoogle Scholar
  43. 43.
    Chen H, Xia Y, Huang H, Gan Y, Tao X, Liang C, Luo J, Fang R, Zhang J, Zhang W, Liu X (2017) Chem Eng J 330:1195–1202CrossRefGoogle Scholar
  44. 44.
    France LJ, Yang Q, Li W, Chen Z, Guang J, Guo D, Wang L, Li X (2017) Appl Catal B 206:203–215CrossRefGoogle Scholar
  45. 45.
    Fang D, He F, Liu X, Qi K, Xie J, Li F, Yu C (2018) Appl Surf Sci 427:45–55CrossRefGoogle Scholar
  46. 46.
    Thirupathi B, Smirniotis PG (2011) Appl Catal B 110:195–206CrossRefGoogle Scholar
  47. 47.
    Putluru SSR, Schill L, Jensen AD, Siret B, Tabaries F, Fehrmann R (2015) Appl Catal B 165:628–635CrossRefGoogle Scholar
  48. 48.
    Zhan S, Qiu M, Yang S, Zhu D, Yu H, Li Y (2014) J Mater Chem A 2:20486–20493CrossRefGoogle Scholar
  49. 49.
    Meng D, Xu Q, Jiao Y, Guo Y, Guo Y, Wang L, Lu G, Zhan W (2018) Appl Catal B 221:652–663CrossRefGoogle Scholar
  50. 50.
    Li P, Zhang R, Liu N, Royer S (2017) Appl Catal B 203:174–188CrossRefGoogle Scholar
  51. 51.
    Yang W, Zhang R, Chen B, Bion N, Duprez D, Royer S (2012) J Catal 295:45–58CrossRefGoogle Scholar
  52. 52.
    Jin R, Liu Y, Wang Y, Cen W, Wu Z, Wang H, Weng X (2014) Appl Catal B 148–149:582–588CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Institute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations