Skip to main content
Log in

Kinetic study of the selective hydrogenation of 3-hexyne over W–Pd/alumina catalysts

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Low loaded W–Pd/alumina are relatively novel catalysts for performing the selective hydrogenation of alkynes, but there is scarce information on the working mechanism. This work studies the kinetics of the selective hydrogenation of 3-hexyne to (Z)-3-hexene over a low loaded W–Pd/alumina catalyst. Runs at different mild reaction conditions were used for fitting a set of Langmuir–Hinshelwood models. Semihydrogenation was the prevailing reaction path, leading selectively to (Z)-3-hexene > 95%, as with classical Lindlar catalysts. Smaller amounts of (E)-3-hexene and negligible of n-hexane were detected. When considering a pseudo-homogeneous model, approximate orders in 3-hexyne and hydrogen were (2.5) and (− 2.2), respectively. The latter value pointed to an important role of hydrogen chemisorption. Twelve kinetic models were fitted to the experimental data. A normal dissociative adsorption of hydrogen could not account for the high order in hydrogen, hence the adsorption of non-dissociated molecular hydrogen was also taken into account. Best fit model was the one considering adsorption of 3-hexyne as rate-limiting step, with molecular hydrogen acting as a competitor over Pdn+ sites, and with hydrogen being dissociated over other different sites: Pdδ−.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Coq B, Figueras F (2001) Bimetallic palladium catalysts: influence of the co-metal on the catalyst performance. J Mol Catal A: Chem 173:117–134

    Article  CAS  Google Scholar 

  2. Lederhos CR, Maccarrone MJ, Badano JM, Torres GC, Coloma-Pascual F, Yori JC, Quiroga ME (2011) Hept-1-yne partial hydrogenation reaction over supported Pd and W catalysts. Appl Catal A: Gen 396:170–176

    Article  CAS  Google Scholar 

  3. Mastalir A, Király Z, Patzko A, Dékány I, L’Argentiere P (2008) Synthesis and catalytic application of Pd nanoparticles on graphite oxide. Carbon 46:1631–1637

    Article  CAS  Google Scholar 

  4. Papp A, Molnár A, Mastalir A (2005) Catalytic investigation of Pd particles supported on MCM-41 for the selective hydrogenations of terminal and internal alkynes. Appl Catal A: Gen 289:256–266

    Article  CAS  Google Scholar 

  5. Jung A, Jess A, Schubert T, Schütz W (2009) Performance of carbon nanomaterial (nanotubes and nanofibres) supported platinum and palladium catalysts for the hydrogenation of cinnamaldehyde and of 1-octyne. Appl Catal A: Gen 362:95–105

    Article  CAS  Google Scholar 

  6. Anderson JA, Mellor JL, Wells RPK (2009) Pd catalysed hexyne hydrogenation modified by Bi and by Pb. J Catal 261:208–216

    Article  CAS  Google Scholar 

  7. Alvez-Manoli G, Pinnavaia TJ, Zhang Z, Lee DK, Marín-Astorga K, Rodriguez P, Imbert F, Reyes P, Marín-Astorga N (2010) Stereo-selective hydrogenation of 3-hexyne over low-loaded palladium catalysts supported on mesostructured materials. Appl Catal A: Gen 387:26–34

    Article  CAS  Google Scholar 

  8. Chinchilla R, Nájera C (2014) Chemicals from alkynes with palladium catalysts. Chem Rev 114:1783–1826

    Article  CAS  PubMed  Google Scholar 

  9. Oger C, Balas L, Durand T, Galano JM (2013) Are alkyne reductions chemo-, regio-, and stereoselective enough to provide pure (Z)-olefins in polyfunctionalized bioactive molecules. Chem Rev 113:1313–1350

    Article  CAS  PubMed  Google Scholar 

  10. Ulan JG, Wilhelm FM (1989) Mechanism of 2-hexyne hydrogenation on heterogeneous palladium. J Mol Catal 54:243–261

    Article  CAS  Google Scholar 

  11. McEwan L, Julius M, Roberts S, Fletcher JCQ (2010) A review of the use of gold catalysts in selective hydrogenation reactions. Gold Bulletin 43:298–306

    Article  CAS  Google Scholar 

  12. Lindlar H, Dubuis R, Jones FN, McKusick BC (1966) Palladium catalyst for partial reduction of acetylenes. Org Synth 46:89–92

    Article  CAS  Google Scholar 

  13. Liguori F, Barbaro P (2014) Green semi-hydrogenation of alkynes by Pd borate monolith catalysts under continuous flow. J Catal 311:212–220

    Article  CAS  Google Scholar 

  14. Maccarrone MJ, Lederhos CR, Torres G, Betti C, Coloma- Pascual F, Quiroga ME, Yori JC (2012) Partial hydrogenation of 3-hexyne over low-loaded palladium mono and bimetallic catalysts. Appl Catal A: Gen 441:90–98

    Article  CAS  Google Scholar 

  15. Liprandi DA, Cagnola EA, Quiroga ME, L’Argentière PC (2009) Influence of the reaction temperature on the 3-hexyne semi-hydrogenation catalyzed by a palladium(II) complex. Catal Lett 128:423–433

    Article  CAS  Google Scholar 

  16. Woon-Yew S, Yao Z, Yu Z (2012) Stereoselective synthesis of Z-alkenes. Top Curr Chem 327:33–58

    Article  CAS  Google Scholar 

  17. Maccarrone MJ, Torres G, Lederhos C, Betti C, Badano JM, Quiroga M, Yori J (2012) Kinetic study of the partial hydrogenation of 1-heptyne over Ni and Pd supported on alumina. In: Karamé I (ed) Hydrogenation, chap 7. InTech, Rijeka, pp 159–184

  18. Maccarrone MJ, Torres GC, Lederhos C, Badano JM, Vera CR, Quiroga M, Yori JC (2012) Kinetic study of partial hydrogenation of 1-heptyne on tungsten oxide supported on alumina. J Chem Technol Biotechnol 87:1521–1528

    Article  CAS  Google Scholar 

  19. Hu SC, Chen YW (1998) Partial hydrogenation of benzene: a review. J Chin Inst Chem Eng, 29:387–396

    CAS  Google Scholar 

  20. Pons JM, Santelli M (1988) Reductions promoted by low valent transition metal complexes in organic synthesis. Tetrahedron 44:4295–4312

    Article  CAS  Google Scholar 

  21. Trost BM, Ball ZT, Jöge TA (2002) J Am Chem Soc 124(27):7922–7923

    Article  CAS  PubMed  Google Scholar 

  22. Delgado JA, Benkirane O, Claver C, Curulla-Ferré D, Godard C (2017) Dalton Trans 46:12381–12403

    Article  CAS  PubMed  Google Scholar 

  23. Furukawa S, Komatsu T (2016) ACS Catal. 6(3):2121–2125

    Article  CAS  Google Scholar 

  24. Dormand JR, Prince PJ (1980) A family of embedded Runge-Kutta formulae. J Comp Appl Math 6:19–26

    Article  Google Scholar 

  25. Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J Optim 9:112–147

    Article  Google Scholar 

  26. NIST X-ray photoelectron spectroscopy database NIST standard reference database 20, Version 3.5 (Web version), National Institute of Standards and Technology, USA, 2007

  27. Brunner E (1985) Solubility of hydrogen in 10 organic solvents at 298.15, 323.15, and 373.15 K. J Chem Eng Data 30:269–273

    Article  CAS  Google Scholar 

  28. Shriver DF, Atkins PW, Langford CH (1994) Inorganic chemistry, 3rd edn. WH Freeman and Co, New York, p 258

    Google Scholar 

  29. Efremenko I (2001) Implication of palladium geometric and electronic structures to hydrogen activation on bulk surfaces and clusters. J Mol Catal A: Chem 173:19–59

    Article  CAS  Google Scholar 

  30. Rendulic KD, Anger G, Winkler A (1989) Wide range nozzle beam adsorption data for the systems H2/nickel and H2/Pd(100). Surf Sci 208:404–424

    Article  CAS  Google Scholar 

  31. Resch C, Berger HF, Rendulic KD, Bertel E (1994) Adsorption dynamics for the system hydrogen/palladium and its relation to the surface electronic structure. Surf Sci 316:L1105–L1109

    Article  CAS  Google Scholar 

  32. Carrara N, Badano J, Bertero N, Torres G, Betti C, Martínez-Bovier L, Quiroga M, Vera C (2014) Kinetics of the liquid phase selective hydrogenation of 2,3-butanedione over new composite supported Pd catalysts. J Chem Technol Biotechnol 89:265–275

    Article  CAS  Google Scholar 

  33. Betti CP, Badano JM, Lederhos CR, Maccarrone MJ, Carrara NR, Coloma-Pascual F, Quiroga ME, Vera CR (2016) Kinetic study of the selective hydrogenation of styrene over a Pd eggshell composite catalyst. Reac Kinet Mech Cat 117:283–306

    Article  CAS  Google Scholar 

  34. Bos ANR, Westerterp KR (1993) Mechanism and kinetics of the selective hydrogenation of ethyne and ethane. Chem Eng Process 32:1–7

    Article  CAS  Google Scholar 

  35. Margitfalvi J, Guczi L, Weiss AH (1980) Reaction routes for hydrogenation of acetylene–ethylene mixtures using a double labelling method. React Kinet Catal Lett 15:475–479

    Article  CAS  Google Scholar 

  36. Gva LZ, Kho KE (1988) Kinetics of acetylene hydrogenation on palladium deposited on alumina. Kinet Catal 29:381–386

    Google Scholar 

  37. Bond G (2005) Metal-catalysed reactions of hydrocarbons. Springer, Berlin. ISBN 978-0-387-24141-8

    Google Scholar 

  38. Conrad H, Ertl G, Latta EE (1974) Adsorption of hydrogen on palladium single crystal surfaces. Surf Sci 41:435–446

    Article  Google Scholar 

  39. Jewell LJ, Davis B (2006) Review of absorption and adsorption in the hydrogen–palladium system. Appl Catal A: Gen 310:1–15

    Article  CAS  Google Scholar 

  40. Bruehwiler A, Semagina N, Grasemann M, Renken A, Kiwi-Minsker L, Saaler A, Lehmann H, Bonrath W, Roessler F (2008) Three-phase catalytic hydrogenation of a functionalized alkyne: mass transfer and kinetic studies with in situ hydrogen monitoring. Ind Eng Chem Res 47:6862–6869

    Article  CAS  Google Scholar 

  41. Vernuccio S, Rudolf von Rohr P (2015) General kinetic modeling of the selective hydrogenation of 2-methyl-3-butyn-2-ol over a commercial palladium-based catalyst. Ind Eng Chem Res 54(46):11543–11551

    Article  CAS  Google Scholar 

  42. Ibhadon A, Kansal S (2018) the reduction of alkynes over pd-based catalyst materials—a pathway to chemical synthesis. J Chem Eng Process Technol 9(2):1000376

    Google Scholar 

Download references

Acknowledgements

This work was performed with the financial support of CONICET (Grant PIP 11220130100457CO), ANPCyT (Grant PICT 2016 1453) and Universidad Nacional del Litoral (Grants CAI + D 50420150100074LI and 50420150100028LI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Betti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betti, C., Torres, G., Maccarrone, M.J. et al. Kinetic study of the selective hydrogenation of 3-hexyne over W–Pd/alumina catalysts. Reac Kinet Mech Cat 127, 259–281 (2019). https://doi.org/10.1007/s11144-019-01546-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01546-4

Keywords

Navigation