Skip to main content
Log in

Photolysis of polychlorobiphenyls in the presence of nanocrystalline TiO2 and CdS/TiO2

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

We study the photolytic degradation of planar (PCB 2, PCB 12, PCB 13, PCB 15) and non-planar (PCB 8, PCB 29, PCB 31) polychlorobiphenyls in an aqueous alcohol under UV irradiation (λ = 240–320 nm) at ambient temperature and atmospheric pressure for 25 h on nanocrystalline TiO2 and CdS/TiO2. It is found that a conversion of PCB 2 (12.5%), PCB 12 (42.3%) and PCB 29 (98.0%) is more intense in the presence of the CdS/TiO2 composite, whereas mixture of the congeners PCB 8, PCB 13, PCB 15 and the congener PCB 31 can be photolyzed better in the presence of TiO2 with conversion 35.2% and 96.1%, respectively. The different conversions of the PCB congeners are explained considering the structures of the chloroaromatic radicals formed in situ as a result of the primary photolysis process and are confirmed by means of estimation of dipole moments calculated for singlet states of PCBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zanaveskin LN, Averyanov VA (1998) Polychlorobiphenyls: problems of the pollution of the environment and technological neutralisation methods. Russ Chem Rev 67:713–724

    Article  Google Scholar 

  2. Gorbunova TI, Saloutin VI, Chupakhin ON (2010) Chemical methods of transformation of polychlorobiphenyls. Russ Chem Rev 79:511–530

    Article  CAS  Google Scholar 

  3. Wu BZ, Chen HY, Wang SJ, Wai CM, Liao W, Chiu KH (2012) Reductive dechlorination for remediation of polychlorinated biphenyls. Chemosphere 88:757–768

    Article  CAS  PubMed  Google Scholar 

  4. Nadal M, Marquès M, Mari M, Domingo JL (2015) Climate change and environmental concentrations of POPs: a review. Environ Res 143:177–185

    Article  CAS  PubMed  Google Scholar 

  5. Teran T, Lamon L, Marcomini A (2012) Climate change effects on POPs’ environmental behaviour: a scientific perspective for future regulatory actions. Atmos Pollut Res 3:466–476

    Article  CAS  Google Scholar 

  6. Sinkkonen S, Paasivirta J (2000) Degradation half-life times of PCDDs, PCDFs and PCBs for environmental fate modeling. Chemosphere 40:943–949

    Article  CAS  PubMed  Google Scholar 

  7. Bu Q, MacLeod M, Wong F, Toms LML, Mueller JF, Yu G (2015) Historical intake and elimination of polychlorinated biphenyls and organochlorine pesticides by the Australian population reconstructed from biomonitoring data. Environ Int 74:82–88

    Article  CAS  PubMed  Google Scholar 

  8. Wimmerová S, Lancz K, Tihányi J, Šovčiková E, Kočan A, Drobná B, Palkovičová L, Jurečková D, Fabišiková A, Čonka K, Trnovec T (2011) Half-lives of serum PCB congener concentrations in environmentally exposed early adolescents. Chemosphere 82:687–691

    Article  CAS  PubMed  Google Scholar 

  9. Hopf NB, Ruder AM, Waters MA, Succop P (2013) Concentration-dependent half-lives of polychlorinated biphenyl in sera from an occupational cohort. Chemosphere 91:172–178

    Article  CAS  PubMed  Google Scholar 

  10. Broding HC, Schettgen T, Gӧen T, Angerer J, Drexler H (2007) Development and verification of a toxicokinetic model of polychlorinated biphenyl elimination in persons working in a contaminated building. Chemosphere 68:1427–1434

    Article  CAS  PubMed  Google Scholar 

  11. Min JY, Kim R, Min KB (2014) Serum polychlorinated biphenyls concentrations and hearing impairment in adults. Chemosphere 102:6–11

    Article  CAS  PubMed  Google Scholar 

  12. Chen RC, Tang SY, Miyata H, Kashimoto T, Chang YC, Chang KJ, Tung TC (1985) Polychlorinated biphenyl poisoning: correlation of sensory and motor nerve conduction, neurologic symptoms, and blood levels of polychlorinated biphenyls, quaterphenyls, and dibenzofurans. Environ Res 37:340–348

    Article  CAS  PubMed  Google Scholar 

  13. Rempel AA, Kozlova EA, Gorbunova TI, Cherepanova SV, Gerasimov EY, Kozhevnikova NS, Valeeva AA, Korovin EY, Kaichev VV, Shchipunov YA (2015) Synthesis and solar light catalytic properties of titania–cadmium sulfide hybrid nanostructures. Catal Commun 68:61–66

    Article  CAS  Google Scholar 

  14. Huang B, Yang Y, Chen X, Ye D (2010) Preparation and characterization of CdS–TiO2 nanoparticles supported on multi-walled carbon nanotubes. Catal Commun 11:844–847

    Article  CAS  Google Scholar 

  15. Liu Y, Zhang P, Tian B, Zhang J (2015) Enhancing the photocatalytic activity of CdS nanorods for selective oxidation of benzyl alcohol by coating amorphous TiO2 shell layer. Catal Commun 70:30–33

    Article  CAS  Google Scholar 

  16. Vorokh AS, Kozhevnikova NS, Gorbunova TI, Baklanova IV, Gyrdasova OI, Buldakova LY, Yanchenko MY, Bamburov VG (2016) Mechanism of the formation of photosensitive nanostructured TiO2 with low content of CdS nanoparticles. Dokl Phys Chem 467:56–59

    Article  CAS  Google Scholar 

  17. Zyoud AH, Zaatar N, Saadeddin I, Ali C, Park DH, Campet G, Hilal HS (2010) CdS-sensitized TiO2 in phenazopyridine photo-degradation: catalyst efficiency, stability and feasibility assessment. J Hazard Mater 173:318–325

    Article  CAS  PubMed  Google Scholar 

  18. Li X, Wang J, Men Y, Bian Z (2016) TiO2 mesocrystal with exposed (001) facets and CdS quantum dots as an active visible photocatalyst for selective oxidation reactions. Appl Catal B 187:115–121

    Article  CAS  Google Scholar 

  19. Liu Z, Fang P, Wang S, Gao Y, Chen F, Zheng F, Liu Y, Dai Y (2012) Photocatalytic degradation of gaseous benzene with CdS-sensitized TiO2 film coated on fiberglass cloth. J Mol Catal A 363–364:159–165

    Article  CAS  Google Scholar 

  20. Ghows N, Entezari MH (2011) Exceptional catalytic efficiency in mineralization of the reactive textile azo dye (RB5) by a combination of ultrasound and core–shell nanoparticles (CdS/TiO2). J Hazard Mater 195:132–138

    Article  CAS  PubMed  Google Scholar 

  21. Mancipe S, Tzompantzi F, Gómez R (2017) Photocatalytic reduction of 4-nitrophenol to 4-aminophenol over CdS/MgAl layered double hydroxide catalysts under UV irradiation. Reac Kinet Mech Cat 122:625–634

    Article  CAS  Google Scholar 

  22. Wang M, Hua J, Yang Y (2018) Fabrication of CDs/CdS-TiO2 ternary nano-composites for photocatalytic degradation of benzene and toluene under visible light irradiation. Spectrochim Acta A 199:102–109

    Article  CAS  Google Scholar 

  23. Song Y, Li N, Chen D, Xu Q, Li H, He J, Lu J (2018) 3D ordered MoP inverse opals deposited with CdS quantum dots for enhanced visible light photocatalytic activity. Appl Catal B 238:255–262

    Article  CAS  Google Scholar 

  24. Dong Y-Z, Xue Y-S, Yang W-W, You H-M, Su Y (2019) Visible light driven CdS/WO3 inverse opals with enhanced RhB degradation activity. Colloids Surf A 561:381–387

    Article  CAS  Google Scholar 

  25. Mullin MD, Pochini CM, McCrindle S, Romkes M, Safe SH, Safe LM (1984) High-resolution PCB analysis: synthesis and chromatographic properties of all 209 PCB congeners. Environ Sci Technol 18:468–476

    Article  Google Scholar 

  26. Becker H, Berger W, Domschke G, Fanghänel E, Faust J, Fischer M, Gents F, Gewald K, Gluch R, Mayer R, Müller K, Pavel D, Schmidt H, Schollberg K, Schwetlick K, Seiler E, Zeppenfeld G (1967) Organikum. Organisch-chemisches Grundpraktikum, sixth ed., VEB Deuutcher Verlag der Wissenschaften, Berlin

  27. Kozhevnikova NS, Vorokh AS, Rempel AA (2010) Preparation of stable colloidal solution of cadmium sulfide CdS using ethylenediaminetetraacetic acid. Russ J Gen Chem 80:391–394

    Article  CAS  Google Scholar 

  28. Vorokh AS, Kozhevnikova NS, Gorbunova TI, Gyrdasova OI, Baklanova IV, Buldakova LY, Yanchenko MY, Murzakaev AM, Shalaeva EV, Enyashin AN (2017) Facile, rapid and efficient doping of amorphous TiO2 by pre-synthesized colloidal CdS quantum dots. J Alloys Compd 706:205–214

    Article  CAS  Google Scholar 

  29. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  30. Chana A, Concejero MA, de Frutos M, González MJ, Herradón B (2002) Computational studies on biphenyl derivatives. Analysis of the conformational mobility, molecular electrostatic potential, and dipole moment of chlorinated biphenyl: searching for the rationalization of the selective toxicity of polychlorinated biphenyls (PCBs). Chem Res Toxicol 15:1514–1526

    Article  CAS  PubMed  Google Scholar 

  31. Lopes C, Perga ME, Peretti A, Roger MC, Persat H, Babut M (2011) Is PCBs concentration variability between and within freshwater fish species explained by their contamination pathways? Chemosphere 85:502–508

    Article  CAS  PubMed  Google Scholar 

  32. Da Silva JP, Jockusch S, Turro NJ (2009) Probing the photoreactivity of aryl chlorides with oxygen. Photochem Photobiol Sci 8:210–216

    Article  Google Scholar 

  33. Manzano MA, Perales JA, Sales D, Quiroga JM (2004) Using solar and ultraviolet light to degrade PCBs in sand and transformer oils. Chemosphere 57:645–654

    Article  CAS  PubMed  Google Scholar 

  34. Yao Y, Kakimoto K, Ogawa HI, Kato Y, Kadokami K, Shinohara R (2000) Further study on the photochemistry of non-ortho substituted PCBs by UV irradiation in alkaline 2-propanol. Chemosphere 40:951–956

    Article  CAS  PubMed  Google Scholar 

  35. Yao Y, Kakimoto K, Ogawa HI, Kato Y, Hanada Y, Shinohara R, Yoshino E (1997) Reductive dechlorination of non-ortho substituted polychlorinated biphenyls by ultraviolet irradiation in alkaline 2-propanol. Chemosphere 35:891–2897

    Article  Google Scholar 

  36. Hossain MF, Biswas S, Takahashi T (2009) Study of CdS-sensitized solar cells, prepared by ammonia-free chemical bath technique. Thin Solid Films 518:1599–1602

    Article  CAS  Google Scholar 

  37. Lu SY, Wu D, Wang QL, Yan J, Buekens AG, Cen KF (2011) Photocatalytic decomposition on nano-TiO2: Destruction of chloroaromatic compounds. Chemosphere 82:1215–1224

    Article  CAS  PubMed  Google Scholar 

  38. Chang FC, Chiu TC, Yen JH, Wang YS (2003) Dechlorination pathways of ortho-substituted PCBs by UV irradiation in n-hexane and their correlation to the charge distribution on carbon atom. Chemosphere 51:775–784

    Article  CAS  PubMed  Google Scholar 

  39. Miao XS, Chu SG, Xu XB (1999) Degradation pathways of PCBs upon UV irradiation in hexane. Chemosphere 39:1639–1650

    Article  CAS  PubMed  Google Scholar 

  40. Bunce NJ, Bergsma JP, Bergsma MD, De Graff W, Kumar Y, Ravanal L (1980) Structure and mechanism in the photoreduction of aryl chlorides in alkane solvents. J Org Chem 45:3708–3713

    Article  CAS  Google Scholar 

  41. Siegman JR, Houser JJ (1982) Photodehalogenation of the monochloro and monofluoroanisoles. J Org Chem 47:2773–2779

    Article  CAS  Google Scholar 

  42. Da Silva JP, Vieira Ferreira LF, Machado IF, Da Silva AM (2006) Photolysis of 4-chloroanisole in the presence of oxygen. Formation of the 4-methoxyphenylperoxyl radical. J Photochem Photobiol A 182:88–92

    Article  CAS  Google Scholar 

  43. Orvis J, Weiss J, Pagni RM (1991) Further studies on the photoisomerization and hydrolysis of chlorobiphenyls in water. Common ion effect in the photohydrolysis of 4-chlorobiphenyl. J Org Chem 56:1851–1857

    Article  CAS  Google Scholar 

  44. Lazzaroni S, Protti S, Fagnoni M, Albini A (2010) Participation of a heterolytic path in the photochemistry of chlorobenzene. J Photochem Photobiol A 210:140–144

    Article  CAS  Google Scholar 

  45. Mills SA III, Thal DI, Barney J (2007) A summary of the 209 PCB congener nomenclature. Chemosphere 68:1603–1612

    Article  CAS  PubMed  Google Scholar 

  46. Frame GM (1997) A collaborative study of 209 PCB congeners and 6 Aroclors on 20 different HRGC columns. 2. Semi-quantitative Aroclor congener distributions. Fresenius J Anal Chem 357:714–722

    Article  CAS  Google Scholar 

  47. Hillery BR, Girard JE, Schantz MM, Wise SA (1997) Characterization of three Aroclor mixtures using a new cyanobiphenyl stationary phase. Fresenius J Anal Chem 357:723–731

    Article  CAS  Google Scholar 

  48. Fischer R, Ballschmiter K (1989) Congener-specific identification of technical PCB mixtures by capillary gas chromatography on a n-octyl-methyl silicone phase (SB-Octyl 50) with electron capture- and mass-selective detection. Fresenius J Anal Chem 335:457–463

    Article  CAS  Google Scholar 

  49. Karakotia AS, King JES, Vincenta A, Seala S (2010) Synthesis dependent core level binding energy shift in the oxidation state of platinum coated on ceria–titania and its effect on catalytic decomposition of methanol. Appl Catal A 388:262–271

    Article  CAS  Google Scholar 

  50. Oida T, Barr JR, Kimata K, McClure C, Lapeza CR, Hosoya K, Ikegami T, Smith CJ, Patterson DC, Tanaka N (1999) Photolysis of polychlorinated biphenyls on octadecylsilylated silica particles. Chemosphere 39:1795–1807

    Article  CAS  Google Scholar 

  51. De Felip E, Ferri F, Lupi C, Trleff NM, Volpi F, di Domenleo A (1996) Structure-dependent photocatalytic degradation of polychlorobiphenyls in a TiO2 aqueous system. Chemosphere 33:2263–2271

    Article  Google Scholar 

  52. Burch R, Flambard AR (1981) Reaction specificity in catalysts reported to exhibit strong metal-support interactions. React Kinet Catal Lett 17:23–28

    Article  CAS  Google Scholar 

  53. Wang GZ, Wang YW, Chen W, Liang CH, Li GH, Zhang LD (2001) A facile synthesis route to CdS nanocrystals at room temperature. Mater Lett 48:269–272

    Article  CAS  Google Scholar 

  54. Ramaiah KS, Pilkington RD, Hill AE, Tomlinson RD, Bhatnagar AK (2001) Structural and optical investigations on CdS thin films grown by chemical bath technique. Mater Chem Phys 68:22–30

    Article  CAS  Google Scholar 

  55. Kozhevnikova NS, Vorokh AS, Uritskaya AA (2015) Cadmium sulfide nanoparticles obtained by chemical bath deposition. Russ Chem Rev 84:225–250

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by Ministry of Education and Science of the Russian Federation (No. 075-00578-19-00, No. 0397-2019-0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana I. Gorbunova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbunova, T.I., Kozhevnikova, N.S., Vorokh, A.S. et al. Photolysis of polychlorobiphenyls in the presence of nanocrystalline TiO2 and CdS/TiO2. Reac Kinet Mech Cat 126, 1115–1134 (2019). https://doi.org/10.1007/s11144-019-01543-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01543-7

Keywords

Navigation