Reaction Kinetics, Mechanisms and Catalysis

, Volume 126, Issue 2, pp 1135–1153 | Cite as

Immobilized chitosan-montmorillonite composite adsorbent and its photocatalytic regeneration for the removal of methyl orange

  • Noor Nazihah Bahrudin
  • Mohd Asri Nawi
  • Sumiyyah SabarEmail author


In this study, chitosan and clay-montmorillonite (CS-MT) composite was prepared and immobilized on glass plates for the removal of methyl orange (MO) dye from aqueous solution. The immobilized CS-MT was characterized using scanning electron microscopy-energy dispersive X-ray (SEM–EDX), Fourier transform infrared (FTIR), pore structural analysis and UV–Vis diffuse reflectance spectroscopy (UV–Vis DRS). The addition of MT into the CS matrix produced a heterogeneous surface and slightly increased the surface area of the composite film. The adsorption study revealed that the pseudo-second-order kinetic and Langmuir isotherm models could well describe the adsorption of MO dye onto the immobilized CS-MT. After saturation, the spent CS-MT was regenerated via the TiO2 photocatalytic oxidation under UV–Vis irradiation. During the regeneration, the spent CS-MT underwent two concurrent processes: desorption of MO dye and photocatalytic oxidation of desorbed dye by the TiO2 photocatalyst. The photocatalytic regeneration of the spent immobilized CS-MT was highly effective in ultra-pure water at pH 11, as it mineralized up to 86% of the desorbed MO within 20 h of regeneration time.


Adsorption Chitosan Immobilization Montmorillonite Photocatalytic regeneration Titanium dioxide 



The authors would like to thank Universiti Sains Malaysia (USM) for the research facilities and financial support under the USM Short Term Grant (304/PJJAUH/6313104). We also would like to acknowledge the Ministry of Education (MOE) Malaysia for the financial assistance under the Fundamental Research Grant Scheme (FRGS, 203/PKIMIA/6711228) and scholarship under My Brain 15 to N.N. Bahrudin.

Supplementary material

11144_2019_1536_MOESM1_ESM.docx (1.3 mb)
Electronic supplementary material 1 (DOCX 1301 kb)


  1. 1.
    Hao OJ, Kim H, Chiang P-C (2000) Crit Rev Environ Sci Technol 30:449–505CrossRefGoogle Scholar
  2. 2.
    Zainal Z, Hui LK, Hussein MZ, Abdullah AH, Hamadneh IR (2009) J Hazard Mater 164:138–145CrossRefPubMedGoogle Scholar
  3. 3.
    Ghosh S, Kouame NA, Remita S, Ramos L, Goubard F, Aubert P-H, Dazzi A, Deniset-Besseau A, Remita H (2015) Sci Rep 5:18002CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bahrudin NN, Nawi MA, Nawawi WI (2018) Korean J Chem Eng 35:1450–1461CrossRefGoogle Scholar
  5. 5.
    Huang R, Zhang L, Hu P, Wang J (2016) Int J Biol Macromol 86:496–504CrossRefPubMedGoogle Scholar
  6. 6.
    Zhao P, Xin M, Li M, Deng J (2015) Desalin Water Treat 57:1–9CrossRefGoogle Scholar
  7. 7.
    El-Dib F, Tawfik F, Eshaq G, Hefni H, ElMetwally A (2016) Int J Biol Macromol 86:750–755CrossRefPubMedGoogle Scholar
  8. 8.
    Wang S, Chen L, Tong Y (2006) J Polym Sci. Part A: Polym Chem 44:686–696CrossRefGoogle Scholar
  9. 9.
    Pereira FAR, Sousa KS, Cavalcanti GRS, Fonseca MG, de Souza AG, Alves APM (2013) Int J Biol Macromol 61:471–478CrossRefPubMedGoogle Scholar
  10. 10.
    Umpuch C, Sakaew S (2015) Desalin Water Treat 53:2962–2969CrossRefGoogle Scholar
  11. 11.
    Monvisade P, Siriphannon P (2009) Appl Clay Sci 42:427–431CrossRefGoogle Scholar
  12. 12.
    Bahrudin NN, Nawi MA (2018) Reac Kinet Mech Cat 124:153–169CrossRefGoogle Scholar
  13. 13.
    Liu J, Crittenden JC, Hand DW, Perram DL (1996) J Environ Eng 122:707–713CrossRefGoogle Scholar
  14. 14.
    Moura JM, Gründmann DD, Cadaval TR, Dotto GL, Pinto LA (2016) J Environ Chem Eng 4:2259–2267CrossRefGoogle Scholar
  15. 15.
    Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Chem Rev 114:9919–9986CrossRefPubMedGoogle Scholar
  16. 16.
    Bahrudin NN, Nawi MA, Nawawi WI (2018) Mater Res Bull 106:388–395CrossRefGoogle Scholar
  17. 17.
    Dhodapkar R, Rao NN, Pande SP, Nandy T, Devotta S (2007) React Funct Polym 67:540–548CrossRefGoogle Scholar
  18. 18.
    Xing Y, Liu D, Zhang LP (2010) Desalination 259:187–191CrossRefGoogle Scholar
  19. 19.
    Xing Y, Zhang L, Li B, Sun X, Yu J (2011) Sep Sci Technol 46:2298–2304CrossRefGoogle Scholar
  20. 20.
    Yu F, Chen L, Ma J, Sun Y, Li Q, Li C, Yang M, Chen J (2014) RSC Adv 4:5518–5523CrossRefGoogle Scholar
  21. 21.
    Haitham K, Razak S, Nawi MA (2014) Arab J Chem. CrossRefGoogle Scholar
  22. 22.
    Lente G (2015) Deterministic kinetics in chemistry and systems biology. Springer International Publishing, New York, pp 52–58Google Scholar
  23. 23.
    Tan CHC, Sabar S, Hussin MH (2018) S Afr J Chem Eng 26:11–24Google Scholar
  24. 24.
    Bahrudin NN, Nawi MA (2018) Korean J Chem Eng 35:1532–1541CrossRefGoogle Scholar
  25. 25.
    Ngoh YS, Nawi MA (2016) Mater Res Bull 76:8–21CrossRefGoogle Scholar
  26. 26.
    Lin KF, Hsu CY, Huang TS, Chiu WY, Lee YH, Young TH (2005) J Appl Polym Sci 98:2042–2047CrossRefGoogle Scholar
  27. 27.
    Nesic AR, Velickovic SJ, Antonovic DG (2012) J Hazard Mater 209:256–263CrossRefPubMedGoogle Scholar
  28. 28.
    Zhu J, Tian M, Zhang Y, Zhang H, Liu J (2015) Chem Eng J 265:184–193CrossRefGoogle Scholar
  29. 29.
    Darder M, Colilla M, Ruiz-Hitzky E (2003) Chem Mater 15:3774–3780CrossRefGoogle Scholar
  30. 30.
    Vanamudan A, Pamidimukkala P (2015) Int J Biol Macromol 74:127–135CrossRefPubMedGoogle Scholar
  31. 31.
    Nawi MA, Sabar S, Jawad AH, Sheilatina WS (2010) Biochem Eng J 49:317–325CrossRefGoogle Scholar
  32. 32.
    Sing KSW (1982) Pure Appl Chem 54:2201CrossRefGoogle Scholar
  33. 33.
    Ho YS, McKay G (1999) Process Biochem 34:451–465CrossRefGoogle Scholar
  34. 34.
    Marrakchi F, Khanday W, Asif M, Hameed B (2016) Int J Biol Macromol 93:1231–1239CrossRefPubMedGoogle Scholar
  35. 35.
    Largitte L, Laminie J (2015) J Env Chem Eng 3:474–481CrossRefGoogle Scholar
  36. 36.
    Obeid L, Bée A, Talbot D, Jaafar SB, Dupuis V, Abramson S, Cabuil V, Welschbillig M (2013) J Colloid Interface Sci 410:52–58CrossRefPubMedGoogle Scholar
  37. 37.
    Yan H, Yang H, Li A, Cheng R (2016) Chem Eng J 284:1397–1405CrossRefGoogle Scholar
  38. 38.
    Zeng L, Xie M, Zhang Q, Kang Y, Guo X, Xiao H, Peng Y, Luo J (2015) Carbohydr Polym 123:89–98CrossRefPubMedGoogle Scholar
  39. 39.
    Ansari R, Dezhampanah H (2013) Eur Chem Bull 2:220–225Google Scholar
  40. 40.
    Vijayaraghavan K, Yun Y-S (2008) Biotechnol Adv 26:266–291CrossRefPubMedGoogle Scholar
  41. 41.
    Jawad AH, Nawi M (2012) J Polym Environ 20:817–829CrossRefGoogle Scholar
  42. 42.
    Mucha MA, Pawlak AD (2002) Polimery 47:509–516CrossRefGoogle Scholar
  43. 43.
    Huang R, Liu Q, Huo J, Yang B (2017) Arab J Chem 10:24–32CrossRefGoogle Scholar
  44. 44.
    Umpuch CS, Songsak S (2013) Songklanakarin J Sci Technol 35:451–459Google Scholar
  45. 45.
    Zhu H, Jiang R, Fu Y-Q, Jiang J-H, Xiao L, Zeng G-M (2011) Appl Surf Sci 258:1337–1344CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.School of Chemical SciencesUniversiti Sains MalaysiaMindenMalaysia
  2. 2.Chemistry Section, School of Distance EducationUniversiti Sains MalaysiaMindenMalaysia

Personalised recommendations