Skip to main content
Log in

Cyanation of aryl bromides with K4[Fe(CN)6] using polydopamine supported Pd nanoparticle catalysis: formation of magnetite during the reaction

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

We report the application of polydopamine (PDA) supported Pd nanoparticles in the cyanation of aryl halides with inexpensive and non-toxic K4[Fe(CN)6]. We found that Pd/PDA is an efficient catalyst in the reaction of electron poor aryl halides, however, in other cases the addition of tetrabutyl ammonium bromide was necessary for conversion. The main limitation of the system is suggested to be catalyst deactivation due to Pd aggregation, polymer degradation/functionalization under the high temperature required for catalysis. In several cases we found the formation of magnetite upon reaction, suggesting that K4[Fe(CN)6] is giving away all its six CN groups in cyanation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shuttleworth SJ, Allin SM, Sharma PK (1997) Synthesis 11:1217

    Article  Google Scholar 

  2. Sherrington DC (1998) Chem Commun 2275

  3. Clapham B, Reger TS, Janda KD (2001) Tetrahedron 57:4673

    Article  Google Scholar 

  4. Benaglia M, Puglisi A, Cozzi F (2003) Chem Rev 103:3401

    Article  CAS  Google Scholar 

  5. Haag R, Roller S (2004) Top Curr Chem 242:1

    Article  CAS  Google Scholar 

  6. Itsuno S, Hassan MM (2014) RSC Adv 4:52023

    Article  CAS  Google Scholar 

  7. Kristensen TE, Hansen T (2010) Eur J Org Chem 17:3179

    Article  Google Scholar 

  8. Rueping M, Sugiono E, Steck A, Theissmann T (2010) Adv Synth Catal 352:281

    Article  CAS  Google Scholar 

  9. Szöllősi G, London G, Baláspiri L, Somlai C, Bartók M (2003) Chirality 15:S90

    Article  Google Scholar 

  10. Ötvös SB, Mándity IM, Fülöp F (2012) J Catal 295:179

    Article  Google Scholar 

  11. Leadbeater NE, Marco M (2002) Chem Rev 102:3217

    Article  CAS  Google Scholar 

  12. Kobayashi S, Akiyama R (2003) Chem Commun 449

  13. Madhavan N, Jones CW, Weck M (2008) Acc Chem Res 41:1153

    Article  CAS  Google Scholar 

  14. Gupta KC, Sutara AK, Lin C-C (2009) Coord Chem Rev 253:1926

    Article  CAS  Google Scholar 

  15. Králik M, Biffis A (2001) J Mol Catal 177:113

    Article  Google Scholar 

  16. Sarkar S, Guibal E, Quignard F, SenGupta AK (2012) J Nanopart Res 14:715

    Article  Google Scholar 

  17. Gross E, Toste FD, Somorjai GA (2015) Catal Lett 145:126

    Article  CAS  Google Scholar 

  18. Schäfer C, Mhadgut SC, Kugyela N, Török M, Török B (2015) Catal Sci Technol 5:716

    Article  Google Scholar 

  19. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Science 318:426

    Article  CAS  Google Scholar 

  20. Liu Y, Ai K, Lu L (2014) Chem Rev 114:5057

    Article  CAS  Google Scholar 

  21. Török B, Dransfield T (eds) (2018) Green chemistry—an inclusive approach, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  22. Kunfi A, Szabó V, Mastalir Á, Bucsi I, Mohai M, Németh P, Bertóti I, London G (2017) ChemCatChem 9:3236

    Article  CAS  Google Scholar 

  23. Dubey AV, Kumar AV (2016) RSC Adv 6:46864

    Article  CAS  Google Scholar 

  24. Xi J, Xiao J, Xiao F, Jin Y, Dong Y, Jing F, Wang S (2016) Sci Rep 6:21904

    Article  CAS  Google Scholar 

  25. Xie A, Zhang K, Wu F, Wang N, Wang Y, Wang M (2016) Catal Sci Technol 6:1764

    Article  CAS  Google Scholar 

  26. Li Y, Xu L, Xu B, Mao Z, Xu H, Zhong Y, Zhang L, Wang B, Sui X (2017) ACS Appl Mater Interfaces 9:17155

    Article  CAS  Google Scholar 

  27. Fei X, Kong W, Chen X, Jiang X, Shao Z, Lee JY (2017) ACS Catal 7:2412

    Article  CAS  Google Scholar 

  28. Ma R, Yang P, Ma Y, Bian F (2018) ChemCatChem 10:1446

    Article  CAS  Google Scholar 

  29. Kunfi A, May Z, Németh P, London G (2018) J Catal 361:84

    Article  CAS  Google Scholar 

  30. Sundermeier M, Zapf A, Beller M (2013) Eur J Org Chem 19:3513

    Google Scholar 

  31. Torborg C, Beller M (2009) Adv Synth Catal 351:3027

    Article  CAS  Google Scholar 

  32. Anbarasan P, Schareina T, Beller M (2011) Chem Soc Rev 40:5049

    Article  CAS  Google Scholar 

  33. Yan G, Zhang Y, Wang J (2017) Adv Synth Catal 359:4068

    Article  CAS  Google Scholar 

  34. Rosenmund KW, Struck E (1919) Chem Ber 52:1749

    Article  Google Scholar 

  35. von Braun J, Manz G (1931) Liebigs Ann Chem 488:111

    Article  Google Scholar 

  36. Lindley J (1984) Tetrahedron 40:1433

    Article  CAS  Google Scholar 

  37. Sandmeyer T (1884) Chem Ber 17:2650

    Article  Google Scholar 

  38. Sandmeyer T (1885) Chem Ber 18:1492

    Article  Google Scholar 

  39. Sandmeyer T (1885) Chem Ber 18:1946

    Google Scholar 

  40. Schareina T, Zapf A, Beller M (2004) Chem Commun 1388

  41. Schareina T, Zapf A, Beller M (2004) J Organomet Chem 689:4576–4583

    Article  CAS  Google Scholar 

  42. Schareina T, Zapf A, Mägerlein W, Müller N, Beller M (2007) Tetrahedron Lett 48:1087

    Article  CAS  Google Scholar 

  43. Weissman SA, Zewge D, Chen C (2005) J Org Chem 70:1508

    Article  CAS  Google Scholar 

  44. Takagi K, Okamoto T, Sakakibara Y, Ohno A, Oka S, Hayama N (1975) Bull Chem Soc Jpn 48:3298

    Article  CAS  Google Scholar 

  45. Schareina T, Jackstell R, Schulz T, Zapf A, Cotté A, Gotta M, Beller M (2009) Adv Synth Catal 351:643

    Article  CAS  Google Scholar 

  46. Vafaeezadeh M, Hashemi MM, Karbalaie-Reza M (2016) Inorg Chem Commun 72:86

    Article  CAS  Google Scholar 

  47. Sundermeier M, Zapf A, Beller M (2003) Angew Chem Int Ed 42:1661

    Article  CAS  Google Scholar 

  48. Littke A, Soumeillant M, Kaltenbach RF, Cherney RJ, Tarby CM, Kiau S (2007) Org Lett 9:1711

    Article  CAS  Google Scholar 

  49. Zhang J, Chen X, Hu T, Zhang Y, Xu K, Yu Y, Huang J (2010) Catal Lett 139:56

    Article  CAS  Google Scholar 

  50. Senecal TD, Shu W, Buchwald SL (2013) Angew Chem Int Ed 52:10035

    Article  CAS  Google Scholar 

  51. Utsugi M, Ozawa H, Toyofuku E, Hatsuda M (2014) Org Process Res Dev 18:693

    Article  CAS  Google Scholar 

  52. Coombs JR, Fraunhoffer KJ, Simmons EM, Stevens JM, Wisniewski SR, Yu M (2017) J Org Chem 82:7040

    Article  CAS  Google Scholar 

  53. Shi S, Szostak M (2017) Org Lett 19:3095

    Article  CAS  Google Scholar 

  54. Hatsuda M, Seki M (2005) Tetrahedron 61:9908

    Article  CAS  Google Scholar 

  55. Hatsuda M, Seki M (2005) Tetrahedron Lett 46:1849

    Article  CAS  Google Scholar 

  56. Zhu Y-Z, Cai C (2007) Eur J Org Chem 2401

  57. Zhu Y-Z, Cai C (2007) Synth Commun 37:3359

    Article  CAS  Google Scholar 

  58. Chen G, Weng J, Zheng Z, Zhu X, Cai Y, Cai J, Wan Y (2008) Eur J Org Chem. https://doi.org/10.1002/ejoc.200800295

    Article  Google Scholar 

  59. Yu H, Richey RN, Miller WD, Xu J, May SA (2011) J Org Chem 76:665

    Article  CAS  Google Scholar 

  60. Polshettiwar V, Hesemann P, Moreau JJE (2007) Tetrahedron 63:6784

    Article  CAS  Google Scholar 

  61. Islam SM, Mondal P, Tuhina K, Roy AS, Mondal S, Hossain D (2010) J Inorg Organomet Polym 20:264

    Article  CAS  Google Scholar 

  62. Islam M, Mondal P, Tuhina K, Roy AS, Mondal S, Hossain D (2010) J Organomet Chem 695:2284

    Article  CAS  Google Scholar 

  63. Modak A, Mondal J, Bhaumik A (2012) Green Chem 14:2840

    Article  CAS  Google Scholar 

  64. Jiang H, Jiang J, Wei H, Cai C (2013) Catal Lett 143:1195

    Article  CAS  Google Scholar 

  65. Karimi B, Zamani A, Mansouri F (2014) RSC Adv 4:57639

    Article  CAS  Google Scholar 

  66. Karimi B, Vafaeezadeh M, Akhavan PF (2015) ChemCatChem 7:2248

    Article  CAS  Google Scholar 

  67. Nikitin OM, Polyakova OV, Sazonov PK, Yakimansky AV, Goikhman MY, Podeshvoc IV, Magdesieva TV (2016) N J Chem 40:10465

    Article  CAS  Google Scholar 

  68. Ding S, Tian C, Zhu X, Abney CW, Tian Z, Chen B, Li M, Jiang D, Zhang N, Da S (2017) ChemSusChem 10:2348

    Article  CAS  Google Scholar 

  69. Wu Z-C, Yang Q, Ge X, Ren Y-M, Yang R-C, Tao T-X (2017) Catal Lett 147:1333

    Article  Google Scholar 

  70. Chattopadhyay K, Dey R, Ranu BC (2009) Tetrahedron Lett 50:3164

    Article  CAS  Google Scholar 

  71. Beletskaya IP, Selivanova AV, Tyurin VS, Matveev VV, Khokhlov AR (2010) Russ J Org Chem 46:157

    Article  CAS  Google Scholar 

  72. Magdesieva TV, Nikitin OM, Zolotukhina EV, Vorotyntsev MA (2014) Electrochim Acta 122:289

    Article  CAS  Google Scholar 

  73. Chatterjee T, Dey R, Ranu BC (2014) J Org Chem 79:5875

    Article  CAS  Google Scholar 

  74. Ganapathy D, Kotha SS, Sekar G (2015) Tetrahedron Lett 56:175

    Article  CAS  Google Scholar 

  75. Gholinejad M, Aminianfar A (2015) J Mol Catal A 397:106

    Article  CAS  Google Scholar 

  76. Kumar BS, Amali AJ, Pitchumani K (2015) ACS Appl Mater Interfaces 7:22907

    Article  Google Scholar 

  77. Modak A, Bhaumik A (2016) J Mol Catal A 425:147

    Article  CAS  Google Scholar 

  78. Mondal B, Acharyya K, Howlader P, Mukherjee PS (2016) J Am Chem Soc 138:1709

    Article  CAS  Google Scholar 

  79. Nasrollahzadeh M (2016) Tetrahedron Lett 57:337

    Article  CAS  Google Scholar 

  80. Gerber R, Oberholzer M, Frech CM (2012) Chem Eur J 18:2978

    Article  CAS  Google Scholar 

  81. Martin MT, Liu B, Cooley BE, Eaddy JF (2007) Tetrahedron Lett 48:2555

    Article  CAS  Google Scholar 

  82. Ooi T, Uematsu Y, Maruoka K (2006) J Am Chem Soc 128:2548

    Article  CAS  Google Scholar 

  83. Jeffery T (1996) Tetrahedron 52:10113

    Article  CAS  Google Scholar 

  84. Hong S, Na YS, Choi S, Song IT, Kim WY, Lee H (2012) Adv Funct Mater 22:4711

    Article  CAS  Google Scholar 

  85. Liebscher J, Mrówczyński R, Scheidt HA, Filip C, Hădade ND, Turcu R, Bende A, Beck S (2013) Langmuir 29:10539

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Research, Development and Innovation Office, Hungary [NKFIH Grant FK 123760 (GL)] is gratefully acknowledged. GL acknowledges the János Bolyai Research Scholarship from the Hungarian Academy of Sciences. Péter Németh (Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences) is acknowledged for TEM and SEM imaging of PDA. The Chemical Biology Research Group and the Organocatalysis Research Group (both at the Institute of Organic Chemistry Research Centre for Natural Sciences, Hungarian Academy of Sciences) are acknowledged for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor London.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1003 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gazdag, T., Kunfi, A. & London, G. Cyanation of aryl bromides with K4[Fe(CN)6] using polydopamine supported Pd nanoparticle catalysis: formation of magnetite during the reaction. Reac Kinet Mech Cat 125, 567–581 (2018). https://doi.org/10.1007/s11144-018-1478-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1478-x

Keywords

Navigation