Skip to main content
Log in

Ni catalyst synthesized by hydrothermal deposition on the polymeric matrix in the supercritical deoxygenation of fatty acids

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In the current work, the use of Ni-containing catalyst on the base of hypercrosslinked polystyrene in the stearic acid (SA) hydrodeoxygenation (HDO) in the medium of supercritical n-hexane is presented. The catalyst was synthesized by the hydrothermal deposition of Ni-containing particles into the pores of the polymeric matrix in the medium of superheated water. It was found that the catalyst is characterized by the high surface area and the uniform deposition of the active phase on the catalyst surface. Ni in the catalyst is represented by NiOOH. The mean particle diameter of the active phase was found to be 5.5 nm. The catalyst showed high efficiency in the SA HDO in the medium of supercritical n-hexane reaching the C16–C17 yield up to 90 at 100% substrate conversion. It was shown that the catalyst maintained its activity in minimum five consecutive runs without sufficient loose selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

HDO:

Hydrodeoxygenation

HPS:

Hypercrosslinked polystyrene

SA:

Stearic acid

FAMEs:

Fatty acid methyl esters

UV-spectroscopy:

Ultraviolet spectroscopy

XPS:

X-ray photoelectron spectroscopy

TEM:

Transmission electron microscopy

TGA:

Thermogravimetric analysis

BE:

Binding energy

References

  1. Gosselink RW, Hollak SAW, Chang S-W, van Haveren J, de Jong KP, Bitter JH, van Es DS (2013) Chemsuschem 6:1576–1594

    Article  CAS  PubMed  Google Scholar 

  2. Meller E, Green U, Aizenshtat Z, Sasson Y (2014) Fuel 133:89–95

    Article  CAS  Google Scholar 

  3. Shao Y, Xia Q, Liu X, Lu G, Wang Y (2015) Chemsuschem 8:1761–1767

    Article  CAS  PubMed  Google Scholar 

  4. Niemantsverdriet H, van Helden P, Hensen E, Lennon D, Holt K, Hutchings G, Bowker M, Catlow R, Shozi M, Jewell L, Claeys M, Hayward J, Coville N, Fischer N, Roldan A, Redekop E, Gambu T, Deeplal L, Mkhwanazi TPO, Weststrate K-J, Bahnemann D, Neurock M, Schulz H, Ma D, Kondrat S, Collier P, Gupta AK, Corma A, Akomeah P, Iglesia E, van Steen E, de Leeuw N, Wolf M, van Heerden T (2017) Faraday Discuss 197:165–205

    Article  CAS  PubMed  Google Scholar 

  5. Arun N, Sharma RV, Dalai AK (2015) Renew Sustain Energy Rev 48:240–255

    Article  CAS  Google Scholar 

  6. Elliott DC, Hart TR (2009) Energy Fuels 23:631–637

    Article  CAS  Google Scholar 

  7. Deneyer A, Renders T, van Aelst J, van den Bosch S, Gabrie D, Sels BF (2015) Curr Opin Chem Biol 29:40–48

    Article  CAS  PubMed  Google Scholar 

  8. Donnis B, Egeberg RG, Blom P, Knudsen KG (2009) Top Catal 52:229–240

    Article  CAS  Google Scholar 

  9. Snåre M, Kubičková I, Mäki-Arvela P, Eränen K, Murzin DYu (2006) Ind Eng Chem Res 45:5708–5715

    Article  CAS  Google Scholar 

  10. Kubička D, Horáček J, Setnička M, Bulánek R, Zukal A, Kubičková I (2014) Appl Catal B 145:101–107

    Article  CAS  Google Scholar 

  11. Hermida L, Abdullah AZ, Mohamed AR (2015) Renew Sustain Energy Rev 42:1223–1233

    Article  CAS  Google Scholar 

  12. Liu Q, Bie Y, Qiu S, Zhang Q, Sainio J, Wang T, Ma L, Lehtonen J (2014) Appl Catal B 147:236–245

    Article  CAS  Google Scholar 

  13. Mäki-Arvela P, Kubičková I, Eränen K, Snåre M, Murzin DYu (2007) Energy Fuels 21:30–41

    Article  CAS  Google Scholar 

  14. Kubičková I, Snåre M, Eränen K, Mäki-Arvela P, Murzin DYu (2005) Catal Today 106:197–200

    Article  CAS  Google Scholar 

  15. Kon K, Onodera W, Takakusagia S, Shimizu K (2014) Catal Sci Technol 4:3705–3712

    Article  CAS  Google Scholar 

  16. Hollak SAW, Arins MA, de Jong KP, van Es DS (2014) ChemSusChem 7:1057–1060

    Article  CAS  PubMed  Google Scholar 

  17. de Sousa FP, Cardoso CC, Pasa VMD (2016) Fuel Process Technol 143:35–42

    Article  CAS  Google Scholar 

  18. Matthias KH, Pfutzenreuter AR, Hoelderich WF (2015) Appl Catal B 174–175:383–394

    Google Scholar 

  19. Dragu A, Kinayyigit S, García-Suárez EJ, Florea M, Stepan E, Velea S, Tanase L, Collière V, Philippot K, Granger P, Parvulescu VI (2015) Appl Catal A 504:81–91

    Article  CAS  Google Scholar 

  20. Immer JG, Kelly MJ, Lamb HH (2010) Appl Catal A 375:134–139

    Article  CAS  Google Scholar 

  21. Ma B, Zhao C (2015) Green Chem 17:1692–1701

    Article  CAS  Google Scholar 

  22. Santillan-Jimenez E, Morgan T, Shoup J, Harman-Ware AE, Crocker M (2014) Catal Today 237:136–144

    Article  CAS  Google Scholar 

  23. Hachemi I, Jenistova K, Mäki-Arvela P, Kumar N, Eränen K, Hemming J, Murzin D (2016) Catal Sci Technol 6:1476–1487

    Article  CAS  Google Scholar 

  24. Chen H, Wang Q, Zhang X, Wang L (2015) Fuel 159:430–435

    Article  CAS  Google Scholar 

  25. Galadima A, Muraza O (2015) J Ind Eng Chem 29:12–23

    Article  CAS  Google Scholar 

  26. Song W, Zhao C, Lercher JA (2013) Chemistry 19:9833–9842

    Article  CAS  PubMed  Google Scholar 

  27. Srifa A, Faungnawakij K, Itthibenchapong V, Assabumrungrat S (2015) Chem Eng J 278:249–258

    Article  CAS  Google Scholar 

  28. Ding R, Wu Y, Chen Y, Liang J, Liu J, Yang M (2015) Chem Eng Sci 121:313–321

    Article  CAS  Google Scholar 

  29. Doluda VYu, Sulman EM, Matveeva VG, Sulman MG, Bykov AV, Lakina NV, Sidorov AI, Valetsky PM, Bronstein LM (2013) Top Catal 56:688–695

    Article  CAS  Google Scholar 

  30. Stepacheva AA, Nikoshvili LZh, Sulman EM, Matveeva VG (2014) Green Process Synth 3:441–446

    CAS  Google Scholar 

  31. Sapunov VN, Stepacheva AA, Sulman EM, Wärnå J, Mäki-Arvela P, Sulman MG, Sidorov AI, Stein BD, Murzin DY, Matveeva VG (2017) J Ind Eng Chem 46:426–435

    Article  CAS  Google Scholar 

  32. Stepacheva AA, Matveeva VG, Sulman EM, Sapunov VN (2016) Chem Eng Trans 52:625–630

    Google Scholar 

  33. Antolini E, Salgado JRC, Santos LGRA, Garcia G, Ticianelli EA, Pastor E, Gonzalez ERJ (2006) Appl Electrochem 36:355–362

    Article  CAS  Google Scholar 

  34. Morère J, Tenorio MJ, Torralvo MJ, Pando C, Renuncio JAR, Cabanas A (2011) J Supercrit Fluids 56:213–222

    Article  CAS  Google Scholar 

  35. Zhang Y, Erkey C (2006) J Supercrit Fluids 38:252–267

    Article  CAS  Google Scholar 

  36. Ziegler KJ, Doty RC, Johnston KP, Korgel BA (2001) J Am Chem Soc 123:7797–7803

    Article  CAS  PubMed  Google Scholar 

  37. Gloyna EF, Li L (1993) Waste Manag 13:379–394

    Article  CAS  Google Scholar 

  38. Cabanas A, Darr JA, Lester E, Poliakoff MJ (2001) J Mater Chem 11:561–568

    Article  CAS  Google Scholar 

  39. Goia DV, Matijevic E (1998) New J Chem 22:1203–1215

    Article  CAS  Google Scholar 

  40. Galkin AA, Kostyuk BG, Lunin VV, Poliakoff M (2000) Angew Chem Int Ed 39:2738–2740

    Article  CAS  Google Scholar 

  41. Galkin AA, Kostyuk BG, Kuznetsova NN, Turakulova AO, Lunin VV, Polyakov M (2001) Kinet Catal 42:154–162

    Article  CAS  Google Scholar 

  42. Adschiri T, Kanazawa K, Arai K (1992) J Am Ceram Soc 75:615–2618

    Google Scholar 

  43. Kim SK, Brand S, Lee H-S, Kim Y, Kim J (2013) Chem Eng J 228:114–123

    Article  CAS  Google Scholar 

  44. van den Hark S, Harrod M (2001) Ind Eng Chem Res 40:5052–5057

    Article  CAS  Google Scholar 

  45. King J, Holliday R, List G, Snyder J (2001) J Am Oil Chem Soc 78:107–113

    Article  CAS  Google Scholar 

  46. Piqueras CM, Tonetto G, Bottini S, Damiani DE (2008) Catal Today 133–135:836–841

    Article  CAS  Google Scholar 

  47. Kim SK, Lee HS, Hong MH, Lim JS, Kim J (2014) Chemsuschem 7:492–500

    Article  CAS  PubMed  Google Scholar 

  48. Fu J, Lu X, Savage PE (2010) Energy Environ Sci 3:311–317

    Article  CAS  Google Scholar 

  49. Fu J, Shi F, Thompson T Jr, Lu X, Savage PE (2011) ACS Catal 1:227–231

    Article  CAS  Google Scholar 

  50. Hossain MZ, Jhawar AK, Chowdhury MBI, Xu WZ, Wu W, Hiscott D, Charpentier PA (2017) Energy Fuels 31(4):4013–4023

    Article  CAS  Google Scholar 

  51. Fang X, Shi Y, Wu K, Liang J, Wu Y, Yang M (2017) RSC Adv 7:40581–40590

    Article  CAS  Google Scholar 

  52. Smirnova AL, Hu Y-L, Zhang L, Aindow M, Menard P, Singh P, Goberman D, Shaw L, Wan X, Rhine W (2009) ECS Trans 19(21):9–21

    Article  CAS  Google Scholar 

  53. Grosvenor AP, Biesinger MC, Smart RSC, McIntyre NS (2006) Surf Sci 600:1771–1779

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank the Russian Science Foundation [Grant Number 17-79-10089] for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonina A. Stepacheva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepacheva, A.A., Markova, M.E., Bykov, A.V. et al. Ni catalyst synthesized by hydrothermal deposition on the polymeric matrix in the supercritical deoxygenation of fatty acids. Reac Kinet Mech Cat 125, 213–226 (2018). https://doi.org/10.1007/s11144-018-1424-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1424-y

Keywords

Navigation