Skip to main content
Log in

Behavior of epichlorohydrin catalytic acidolysis reaction with the variation of solvent polarity

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The kinetics of the reaction of epichlorohydrin ((2-chloromethyl)oxirane) with acetic acid at 60 °C was studied in the presence of the catalyst—tetrabutylammonium iodide either in epichlorohydrin, or a binary solvent epichlorohydrin:tetrahydrofuran. The ratios of the binary solvent components were selected in order to preserve the excess of epichlorohydrin as the condition for pseudoorder with respect to the oxirane reactant. As the order of the reaction with respect to acid may differ depending on the reaction series, it was determined by kinetic and modelling methods. The correlation between solvent permittivity and observed and catalytic reaction rate constants was established. The equation for predicting tetrabutylammonium iodide catalytic reactivity in the binary solvent was obtained. The effect of solvent polarity on the rate and mechanism of oxirane ring opening reaction in the presence of a base catalyst was estimated via Laidler–Eyring equation. It was shown that the decrease of solvent polarity increases the reaction rate and its regioselectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm FR, Frey H (2016) Chem Rev 116(4):2170–2243. https://doi.org/10.1021/acs.chemrev.5b00441

    Article  CAS  PubMed  Google Scholar 

  2. Lee Y, Yu J, Park K, Kim GJ (2017) Bull Korean Chem Soc 38:795–803. https://doi.org/10.1002/bkcs.11174

    Article  CAS  Google Scholar 

  3. Kobzev SP, Romantsevich AM, Simonov MA, Opeyda IO (1995) Kinet Catal 36:219–224

    Google Scholar 

  4. Shved EN, Usachov VV, Kozorezova EI (2007) Ukr Chem J 73:113–117

    CAS  Google Scholar 

  5. Aouf C, Le Guernevé C, Caillol S, Fulcrand H (2013) Tetrahedron 69(4):1345–1353. https://doi.org/10.1016/j.tet.2012.11.079

    Article  CAS  Google Scholar 

  6. Kasyan LI, Kasyan AO, Okovytyi SI, Tarabara IN (2003) Alicyclic epoxy compounds. Oles Honchar Dnipropetrovsk National University, Dnipropetrovsk, Ukraine, Reactivity (in Russian)

    Google Scholar 

  7. Bukowska A, Bukowski W (2002) Org Process Res Dev 6(3):234–237. https://doi.org/10.1021/op010112q

    Article  CAS  Google Scholar 

  8. Shpanko IV, Sadova IV (2006) Ukr Chem J 72:42–47

    CAS  Google Scholar 

  9. Guskov AK, Yui S, Makarov MG, Shvets VF, Bukowska A, Kozlovskyi RA (1973) Kinet Catal 14:928–932

    Google Scholar 

  10. Shvets VF, Romashkin AV, Yudina VV (1973) Kinet Catal 14:928–932

    CAS  Google Scholar 

  11. Bakhtin S, Shved E, Bespal’ko Y (2017) J Phys Org Chem 30(12). https://doi.org/10.1002/poc.3717

  12. Goga ST, Lebed AV, Mchedlov-Petrossyan NO (2010) J Chem Eng Data 55:1887–1892

    Article  CAS  Google Scholar 

  13. Palval IN, Lebed AV, McHedlov-Petrossyan NO (2011) J Mol Liq 158(1):33–37. https://doi.org/10.1016/j.molliq.2010.10.004

    Article  CAS  Google Scholar 

  14. Roy MN, Sarkar L, Dewan R (2011) J Chem Thermodyn 43(3):371–376. https://doi.org/10.1016/j.jct.2010.10.008

    Article  CAS  Google Scholar 

  15. Bukowska A, Guskov KA, Makarov MG, Rokaszewski E, Shvets VF (1995) J Chem Technol Biotechnol 63:374–378

    Article  CAS  Google Scholar 

  16. Bukowski W (2000) Int J Chem Kinet 32(6):378–387.

    Article  CAS  Google Scholar 

  17. Lebedev NN, Guskov KA (1963) Kinet Catal 4:116–127

    CAS  Google Scholar 

  18. Tanaka Y, Takeuchi H (1968) Tetrahedron 24:6433–6448

    Article  CAS  Google Scholar 

  19. Ishii Y, Sakai S, Sugiyama T (1963) Bull Jpn Pet Inst 5:44–52

    Article  CAS  Google Scholar 

  20. Armarego WLF, Chai CLL (2013) Purification of laboratory chemicals. Elsevier, Waltham

    Google Scholar 

  21. Chernov’yants MS, Gol’eva VE, Pyshchev AI (2003) J Anal Chem 58(2):139–143. https://doi.org/10.1023/a:1022302020450

    Article  Google Scholar 

  22. Lide DR (ed) (2009) CRC handbook of chemistry and physics (2009–2010). 90th edn. CRC Press, Boca Raton

  23. Reis JC, Iglesias TP, Douheret G, Davis MI (2009) Phys Chem Chem Phys 11(20):3977–3986. https://doi.org/10.1039/b820613a

    Article  CAS  PubMed  Google Scholar 

  24. Shologon IM, Klebanov MS, Aldoshin VA (1982) Kinet Catal 4:841–846

    Google Scholar 

  25. Shved EN (2013) Sinel’nikova MA, Bespal’ko YN. Vestn NovSU 2:64–67

    Google Scholar 

  26. Abramenkov AV (2012) KINET—a program for numerical modelling of complex chemical reactions kinetics (in Russian). http://www.chem.msu.su/rus/teaching/KINET2012. Accessed 19 Jan 2018

  27. Palm VA (1977) Fundamentals of the quantitative theory of organic reactions. Khimiya, Leningrad (in Russian)

    Google Scholar 

Download references

Acknowledgements

The study was carried out within the Fundamental Research Programme funded by the Ministry of Education and Science of Ukraine (Project No. 0116U002519).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kseniia Yutilova.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yutilova, K., Shved, E. & Shuvakin, S. Behavior of epichlorohydrin catalytic acidolysis reaction with the variation of solvent polarity. Reac Kinet Mech Cat 125, 15–24 (2018). https://doi.org/10.1007/s11144-018-1408-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1408-y

Keywords

Navigation