Skip to main content
Log in

Experimental approach for identifying hotspots in lab-scale fixed-bed reactors exemplified by the Sabatier reaction

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Isothermal conditions are a prerequisite for the accurate determination of kinetics in heterogeneous catalysis. In this work, an integral fixed-bed lab reactor with 5 mm inner diameter placed inside an aluminum heating block is used. Temperature profiles were recorded with a single but axially movable thermocouple in a fixed bed of a highly loaded supported Ni catalyst (15.4 wt% Ni on γ-Al2O3) for the Sabatier reaction, i.e., the methanation of CO2, under elevated pressures and without carrier gas dilution. The corresponding conversions of CO2 were determined at the reactor outlet. Depending on the reaction conditions, temperature profiles can show significant deviations from isothermal conditions and even a light-off phenomenon with fluctuating conversions seems to occur. Based on our results, an experimental approach based on the use of one single thermocouple in the fixed bed is recommended which allows to exclude the occurrence of hotspots with a high degree of certainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Berger RJ, Stitt EH, Marin GB, Kapteijn F, Moulijn JA (2001) CatTech 5:30–60

    Article  Google Scholar 

  2. Kapteijn F, Berger RJ, Moulijn JA (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, 2nd edn. Wiley, Weinheim

    Google Scholar 

  3. Kapteijn F, Moulijn JA (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, 2nd edn. Wiley, Weinheim

    Google Scholar 

  4. Froment GF, Bischoff KB, DeWilde J (2010) Chemical reactor analysis and design, 3rd edn. Wiley, New York

    Google Scholar 

  5. Anderson JR, Pratt KC (1985) Introduction to characterization and testing of catalysts. Academic Press, Sydney

    Google Scholar 

  6. Weekman VW (1974) AlChE J 20:833–840

    Article  CAS  Google Scholar 

  7. Rase HF (1990) Fixed-bed reactor design and diagnostics: gas-phase reactions. Butterworths, Stoneham

    Google Scholar 

  8. Dautzenberg M (1989) In: Bradley SA, Gattuso MJ, Bertolacini RJ (eds) Characterization and catalyst development. ASC, Washington, DC

    Google Scholar 

  9. Satterfield CN (1970) Mass transfer in heterogeneous catalysis. MIT Press, Cambridge

    Google Scholar 

  10. Berger RJ, Pérez-Ramírez J, Kapteijn F, Moulijn JA (2002) Chem Eng Sci 57:4921–4932

    Article  CAS  Google Scholar 

  11. van den Bleek CV, van der Wiele K, Berg PJ (1969) Chem Eng Sci 24:681–694

    Article  Google Scholar 

  12. Perego C, Peratello S (1999) Catal Today 52:133–145

    Article  CAS  Google Scholar 

  13. Götz M, Lefebvre J, Mörs F, McDaniel Koch A, Graf F, Bajohr S, Reimert R, Kolb T (2016) Renew Energy 85:1371–1390

    Article  CAS  Google Scholar 

  14. Guerra L, Rossi S, Rodrigues J, Gomes J, Puna J, Santos MT (2018) J Environ Chem Eng 6:671–676

    Article  CAS  Google Scholar 

  15. Kopyscinski J, Schildhauer TJ, Vogel F, Biollaz SMA, Wokaun A (2010) J Catal 271:262–279

    Article  CAS  Google Scholar 

  16. Li Y, Zhang Q, Chai R, Zhao G, Liu Y, Lu Y, Cao F (2015) AIChE J 61:4323–4331

    Article  CAS  Google Scholar 

  17. Schüler C, Hinrichsen O (2016) Chem Ing Tech 88:1693–1702

    Article  CAS  Google Scholar 

  18. Tauer G, Kern C, Jess A (2017) In: Preprints 2017-2 of the DGMK-conference, petrochemistry and refining in a changing raw materials landscape, ISBN 978-3-941721-74-6

  19. Belimov M, Metzger D, Pfeifer P (2017) AIChE J 63:120–129

    Article  CAS  Google Scholar 

  20. Gao J, Wang Y, Ping Y, Hu D, Xu G, Gu F, Su F (2012) RSC Adv 2:2358–2368

    Article  CAS  Google Scholar 

  21. Schouten EPS, Borman PC, Westerterp KR (1994) Chem Eng Sci 49:4725–4747

    Article  CAS  Google Scholar 

  22. Anastasov AI (2002) Chem Eng J 86:287–297

    Article  CAS  Google Scholar 

  23. Lange T, Neher F, Klemm E, Heinrich S, Balcazar E, Liebner C (2014) In: Preprints 2014-3 of the DGMK-conference, selective oxidation and functionalization, classical and alternative routes and sources, ISBN 978-3-941721-44-9

  24. Heinrich S, Edeling F, Liebner C, Hieronymus H, Lange T, Klemm E (2012) Chem Eng Sci 84:540–543

    Article  CAS  Google Scholar 

  25. Weatherbee GD, Bartholomew CH (1984) J Catal 87:352–362

    Article  CAS  Google Scholar 

  26. Moulijn JA, Tarfaoui A, Kapteijn F (1991) Catal Today 11:1–12

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mirko Peifer, Dr. Thomas Schwarz and Prof. Dr. Klaus Stöwe for providing the catalyst. This work was supported by ThyssenKrupp Industrial Solutions TKIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Beierlein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beierlein, D., Schirrmeister, S., Traa, Y. et al. Experimental approach for identifying hotspots in lab-scale fixed-bed reactors exemplified by the Sabatier reaction. Reac Kinet Mech Cat 125, 157–170 (2018). https://doi.org/10.1007/s11144-018-1402-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1402-4

Keywords

Navigation