Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 125, Issue 1, pp 157–170 | Cite as

Experimental approach for identifying hotspots in lab-scale fixed-bed reactors exemplified by the Sabatier reaction

  • Dennis Beierlein
  • Steffen Schirrmeister
  • Yvonne Traa
  • Elias Klemm
Article
  • 116 Downloads

Abstract

Isothermal conditions are a prerequisite for the accurate determination of kinetics in heterogeneous catalysis. In this work, an integral fixed-bed lab reactor with 5 mm inner diameter placed inside an aluminum heating block is used. Temperature profiles were recorded with a single but axially movable thermocouple in a fixed bed of a highly loaded supported Ni catalyst (15.4 wt% Ni on γ-Al2O3) for the Sabatier reaction, i.e., the methanation of CO2, under elevated pressures and without carrier gas dilution. The corresponding conversions of CO2 were determined at the reactor outlet. Depending on the reaction conditions, temperature profiles can show significant deviations from isothermal conditions and even a light-off phenomenon with fluctuating conversions seems to occur. Based on our results, an experimental approach based on the use of one single thermocouple in the fixed bed is recommended which allows to exclude the occurrence of hotspots with a high degree of certainty.

Keywords

Sabatier reaction Kinetic measurements Isothermal fixed bed Hotspots Light-off phenomenon 

Notes

Acknowledgements

The authors thank Mirko Peifer, Dr. Thomas Schwarz and Prof. Dr. Klaus Stöwe for providing the catalyst. This work was supported by ThyssenKrupp Industrial Solutions TKIS.

References

  1. 1.
    Berger RJ, Stitt EH, Marin GB, Kapteijn F, Moulijn JA (2001) CatTech 5:30–60CrossRefGoogle Scholar
  2. 2.
    Kapteijn F, Berger RJ, Moulijn JA (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, 2nd edn. Wiley, WeinheimGoogle Scholar
  3. 3.
    Kapteijn F, Moulijn JA (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, 2nd edn. Wiley, WeinheimGoogle Scholar
  4. 4.
    Froment GF, Bischoff KB, DeWilde J (2010) Chemical reactor analysis and design, 3rd edn. Wiley, New YorkGoogle Scholar
  5. 5.
    Anderson JR, Pratt KC (1985) Introduction to characterization and testing of catalysts. Academic Press, SydneyGoogle Scholar
  6. 6.
    Weekman VW (1974) AlChE J 20:833–840CrossRefGoogle Scholar
  7. 7.
    Rase HF (1990) Fixed-bed reactor design and diagnostics: gas-phase reactions. Butterworths, StonehamGoogle Scholar
  8. 8.
    Dautzenberg M (1989) In: Bradley SA, Gattuso MJ, Bertolacini RJ (eds) Characterization and catalyst development. ASC, Washington, DCGoogle Scholar
  9. 9.
    Satterfield CN (1970) Mass transfer in heterogeneous catalysis. MIT Press, CambridgeGoogle Scholar
  10. 10.
    Berger RJ, Pérez-Ramírez J, Kapteijn F, Moulijn JA (2002) Chem Eng Sci 57:4921–4932CrossRefGoogle Scholar
  11. 11.
    van den Bleek CV, van der Wiele K, Berg PJ (1969) Chem Eng Sci 24:681–694CrossRefGoogle Scholar
  12. 12.
    Perego C, Peratello S (1999) Catal Today 52:133–145CrossRefGoogle Scholar
  13. 13.
    Götz M, Lefebvre J, Mörs F, McDaniel Koch A, Graf F, Bajohr S, Reimert R, Kolb T (2016) Renew Energy 85:1371–1390CrossRefGoogle Scholar
  14. 14.
    Guerra L, Rossi S, Rodrigues J, Gomes J, Puna J, Santos MT (2018) J Environ Chem Eng 6:671–676CrossRefGoogle Scholar
  15. 15.
    Kopyscinski J, Schildhauer TJ, Vogel F, Biollaz SMA, Wokaun A (2010) J Catal 271:262–279CrossRefGoogle Scholar
  16. 16.
    Li Y, Zhang Q, Chai R, Zhao G, Liu Y, Lu Y, Cao F (2015) AIChE J 61:4323–4331CrossRefGoogle Scholar
  17. 17.
    Schüler C, Hinrichsen O (2016) Chem Ing Tech 88:1693–1702CrossRefGoogle Scholar
  18. 18.
    Tauer G, Kern C, Jess A (2017) In: Preprints 2017-2 of the DGMK-conference, petrochemistry and refining in a changing raw materials landscape, ISBN 978-3-941721-74-6Google Scholar
  19. 19.
    Belimov M, Metzger D, Pfeifer P (2017) AIChE J 63:120–129CrossRefGoogle Scholar
  20. 20.
    Gao J, Wang Y, Ping Y, Hu D, Xu G, Gu F, Su F (2012) RSC Adv 2:2358–2368CrossRefGoogle Scholar
  21. 21.
    Schouten EPS, Borman PC, Westerterp KR (1994) Chem Eng Sci 49:4725–4747CrossRefGoogle Scholar
  22. 22.
    Anastasov AI (2002) Chem Eng J 86:287–297CrossRefGoogle Scholar
  23. 23.
    Lange T, Neher F, Klemm E, Heinrich S, Balcazar E, Liebner C (2014) In: Preprints 2014-3 of the DGMK-conference, selective oxidation and functionalization, classical and alternative routes and sources, ISBN 978-3-941721-44-9Google Scholar
  24. 24.
    Heinrich S, Edeling F, Liebner C, Hieronymus H, Lange T, Klemm E (2012) Chem Eng Sci 84:540–543CrossRefGoogle Scholar
  25. 25.
    Weatherbee GD, Bartholomew CH (1984) J Catal 87:352–362CrossRefGoogle Scholar
  26. 26.
    Moulijn JA, Tarfaoui A, Kapteijn F (1991) Catal Today 11:1–12CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Dennis Beierlein
    • 1
  • Steffen Schirrmeister
    • 2
  • Yvonne Traa
    • 1
  • Elias Klemm
    • 1
  1. 1.Institute of Chemical TechnologyUniversity of StuttgartStuttgartGermany
  2. 2.ThyssenKrupp Industrial Solutions AGDortmundGermany

Personalised recommendations