Reaction Kinetics, Mechanisms and Catalysis

, Volume 125, Issue 1, pp 171–181 | Cite as

One-step synthesis of reduced graphene oxide supported CoW nanoparticles as efficient catalysts for hydrogen generation from NH3BH3

  • Xigang Du
  • Yuping Tai
  • Hongyu Liu
  • Jun Zhang


W-doped Co nanoparticles (NPs) supported on reduced graphene oxide (RGO) were prepared by the one-step in situ co-reduction of an aqueous solution of cobalt(II) chloride, sodium tungstate dihydrate, and graphene oxide (GO) using NaBH4 as the sole reductant at room temperature. The structure, size, and composition of the CoW/RGO catalysts were characterized by powder XRD, FTIR, EDS, and TEM. The as-synthesized Co0.9W0.1/RGO catalysts exhibited good catalytic activity for the hydrolytic dehydrogenation of ammonia borane (AB) at room temperature. Co/RGO, W/RGO, RGO-free Co0.9W0.1, and Co0.9W0.1/RGO catalyst had a turnover frequency (TOF) of 3.0, 0.1, 1.2, 16.4 mol H2 (mol catalyst)−1 min−1 at 25 °C. Compared to Co/RGO, W/RGO, and the RGO-free Co0.9W0.1, the as-synthesized Co0.9W0.1/RGO nanocatalysts exhibited much better catalytic activity. In addition, kinetic studies indicated that the catalytic hydrolysis of AB by Co0.9W0.1/RGO shows zeroth order kinetics with respect to the substrate concentration, but first order kinetics with respect to the catalyst concentration. Furthermore, the activation energy (Ea) of Co0.9W0.1/RGO was estimated to be 30.7 kJ mol−1, which is lower than the values of most reported metal-based catalysts.


Energy storage material Reduced graphene oxide CoW nanoparticle Ammonia borane Hydrogen generation 



The project was supported by the National Natural Science Foundation of China (21576073, 21076063).

Supplementary material

11144_2018_1392_MOESM1_ESM.doc (33.1 mb)
Supplementary material 1 (DOC 33862 kb)


  1. 1.
    Eberle U, Felderhoff M, Schüth F (2009) Angew Chem Int Ed 48:6608–6630CrossRefGoogle Scholar
  2. 2.
    Mori K, Miyawaki K, Yamashita H (2016) ACS Catal 6:3128–3135CrossRefGoogle Scholar
  3. 3.
    Zhan W, Zhu QL, Xu Q (2016) ACS Catal 6:6892–6905CrossRefGoogle Scholar
  4. 4.
    Zhu QL, Xu Q (2015) Energy Environ Sci 8:478–512CrossRefGoogle Scholar
  5. 5.
    Jiang YY, Dai HB, Zhong YJ, Chen DM, Wang P (2015) Chem Eur J 21(43):15439–15445CrossRefGoogle Scholar
  6. 6.
    Yadava M, Xu Q (2012) Energy Environ Sci 5:9698–9725CrossRefGoogle Scholar
  7. 7.
    Lei W, Zhang H, Wu Y, Zhang B, Liu D, Qin S et al (2014) Nano Energy 6:219–224CrossRefGoogle Scholar
  8. 8.
    Ha E, Lee LYS, Wang J, Li F, Wong KY, Tsang SCE (2014) Adv Mater 26(21):3496–3500CrossRefGoogle Scholar
  9. 9.
    Lototskyy MV, Yartys VA, Pollet BG, Bowman RC (2014) Int J Hydrogen Energy 39(11):5818–5851CrossRefGoogle Scholar
  10. 10.
    Fukuzumi S, Suenobu T (2013) Dalton Trans 42(1):18–28CrossRefGoogle Scholar
  11. 11.
    Staubitz A, Robertson APM, Manners I (2010) Chem Rev 110:4079–4124CrossRefGoogle Scholar
  12. 12.
    Staubitz A, Robertson APM, Sloan ME, Manners I (2010) Chem Rev 110:4023–4078CrossRefGoogle Scholar
  13. 13.
    Bandaru S, English NJ, Phillips AD, Macelroy JMD (2017) Catalysts 7:140Google Scholar
  14. 14.
    Peng B, Chen J (2008) Energy Environ Sci 1:479–483Google Scholar
  15. 15.
    Davis BL, Dixon DA, Garner EB, Gordon JC, Matus MH, Scott B, Stephens FH (2009) Angew Chem Int Ed 48:6812–6816CrossRefGoogle Scholar
  16. 16.
    Lu D, Yu GF, Li Y, Chen MH, Pan YX, Zhou LQ et al (2016) J Alloys Compd 694:662–671CrossRefGoogle Scholar
  17. 17.
    Chen WY, Ji J, Feng X, Duan XZ, Qian G, Li P, Zhou XG et al (2014) J Am Chem Soc 136:16736–16739CrossRefGoogle Scholar
  18. 18.
    Wang LB, Li HL, Zhang WB, Zhao X, Qiu JX, Li AW et al (2017) Angew Chem Int Ed 56:4790–4796CrossRefGoogle Scholar
  19. 19.
    Zhong WD, Tian XK, Yang C, Zhou ZX, Liu XW, Li Y (2016) Int J Hydrogen Energy 41:15225–15235CrossRefGoogle Scholar
  20. 20.
    Yang YW, Feng G, Lu ZH, Hu N, Zhang F, Chen XS (2014) Acta Phys Chim Sin 30:1180–1186Google Scholar
  21. 21.
    Song FZ, Zhu QL, Yang XC, Xu Q (2016) ChemNanoMat 2:942–945CrossRefGoogle Scholar
  22. 22.
    Qiu FY, Wang YJ, Wang YP, Li L, Liu G, Yan C, Jiao LF, Yuan HT (2011) Catal Today 170:64–68CrossRefGoogle Scholar
  23. 23.
    Chou CC, Chen BH (2015) J Power Sources 293:343–350CrossRefGoogle Scholar
  24. 24.
    Yao QL, Lu ZH, Huang W, Chen XS, Zhu J (2016) J Mater Chem A 4:8579–8583CrossRefGoogle Scholar
  25. 25.
    Yang K, Yao QL, Lu ZH, Kang ZB, Shu CX (2017) Acta Phys Chim Sin 3:993–1000Google Scholar
  26. 26.
    Roy S, Pachfule P, Xu Q (2016) Eur J Inorg Chem 2016:4353–4357CrossRefGoogle Scholar
  27. 27.
    Ke DD, Li Y, Wang J, Zhang L, Wang J, Zhao X et al (2016) Int J Hydrogen Energy 41:2564–2574CrossRefGoogle Scholar
  28. 28.
    Wang X, Liu DP, Feng X, Song SY, Zhang HJ (2013) J Am Chem Soc 135:15864–15872CrossRefGoogle Scholar
  29. 29.
    Wang QT, Zhang Z, Liu J, Liu RC, Liu T (2018) Mater Chem Phys 204:58–61Google Scholar
  30. 30.
    Lu H, Gan XT, Mao D, Zhao JL (2017) Photonic Res 5:162–167CrossRefGoogle Scholar
  31. 31.
    Sun DD, Wang MQ, Huang YY, Zhou YX, Qi M, Jiang M, Ren ZY (2017) Chin Opt Lett 15:051603CrossRefGoogle Scholar
  32. 32.
    Zhang S, Shao Y, Liao H, Engelhard MH, Yin G, Lin Y (2011) ACS Nano 5:1785–1791CrossRefGoogle Scholar
  33. 33.
    Ramachandran PV, Gagare PD (2007) Inorg Chem 46:7810–7817CrossRefGoogle Scholar
  34. 34.
    Metin Ö, Mazumder V, Özkar S, Sun S (2010) J Am Chem Soc 132:1468–1469CrossRefGoogle Scholar
  35. 35.
    Men YN, Du XQ, Cheng GZ, Luo W (2017) Int J Hydrogen Energy 42:27165–27173CrossRefGoogle Scholar
  36. 36.
    Kılıç B, Şencanlı S, Metin Ö (2012) J Mol Catal A-Chem 362:104–110Google Scholar
  37. 37.
    Xi PX, Chen FJ, Xie GQ, Ma C, Liu HY, Shao CW et al (2012) Nanoscale 4:5597–5601CrossRefGoogle Scholar
  38. 38.
    Yan JM, Wang ZL, Wang HL, Jiang Q (2012) J Mater Chem 22:10990–10993CrossRefGoogle Scholar
  39. 39.
    Du YS, Cao N, Yang L, Luo W, Cheng GZ (2013) New J Chem 37:3035–3042CrossRefGoogle Scholar
  40. 40.
    Xu Q, Chandra M (2006) J Power Sources 163:364–370CrossRefGoogle Scholar
  41. 41.
    Yao QL, Shi WM, Feng G, Lu ZH, Zhang XL, Tao DJ et al (2014) J Power Sources 257:293–299CrossRefGoogle Scholar
  42. 42.
    Chandra M, Xu Q (2007) J Power Sources 168:135–142CrossRefGoogle Scholar
  43. 43.
    Meng XY, Yang L, Cao N, Du C, Hu K, Su J et al (2014) ChemPlusChem 79:325–332CrossRefGoogle Scholar
  44. 44.
    Yang YW, Zhang F, Wang HL, Yao QL, Chen XS, Lu ZH (2014) J Nanomater 2014:294350Google Scholar
  45. 45.
    Zhou S, Wen M, Wang N, Wu Q, Wu Q, Cheng L (2012) J Mater Chem 22:16858–16864CrossRefGoogle Scholar
  46. 46.
    Du C, Su J, Luo W, Cheng GZ (2014) J Mol Catal A: Chem 383–384:38–45CrossRefGoogle Scholar
  47. 47.
    Xi P, Chen F, Xie G, Ma C, Liu H, Shao C et al (2012) Nanoscale 4(18):5597–5601CrossRefGoogle Scholar
  48. 48.
    Chen GZ, Desinan S, Rosei R, Rosei F, Ma DL (2012) Chem Eur J 18:7925–7930CrossRefGoogle Scholar
  49. 49.
    Chandra M, Xu Q (2007) J Power Sources 168:135–142CrossRefGoogle Scholar
  50. 50.
    Lu ZH, Li JP, Zhu AL, Yao QL, Huang W, Zhou RY et al (2013) Int J Hydrogen Energy 38:5330–5337CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.School of Chemical Engineering and PharmaceuticsHenan University of Science and TechnologyLuoyangChina

Personalised recommendations