Reaction Kinetics, Mechanisms and Catalysis

, Volume 124, Issue 2, pp 711–725 | Cite as

Prins cyclization in 4-methyl-2-phenyl-tetrahydro-2H-pyran-4-ol preparation using smectite clay as catalyst

  • Eliška VyskočilováEmail author
  • Anna Gruberová
  • Mariya Shamzhy
  • Eva Vrbková
  • Jiří Krupka
  • Libor Červený


Prins cyclization of isoprenol with benzaldehyde as a model aldehyde was performed using montmorillonite K10 as an acid catalyst. Various reaction conditions were used including catalyst modification by mineral acids and calcination. Both treatments influenced the selectivity to substituted tetrahydropyranol negatively. Due to the increased specific surface of the catalyst the reaction rate increased. Both addition of water and methanol to the reaction mixture prevented dehydration but the selectivity to desired product remained the same. Chosen reaction conditions (70 °C, ratio aldehyde:isoprenol 0.9:1, catalyst amount 110 wt%, solvent toluene) were used in Prins cyclization of other aldehydes with the similar results. Montmorillonite K10 may be used in preparation of substituted tetrahydropyranols with selectivity ranging from 59 to 69% (depending on aldehyde), which is comparable with or higher than heterogeneous catalysts used previously. This catalyst may be also used repeatedly with slight decrease in the reaction rate and no loss of selectivity.


Prins cyclization Isoprenol Montmorillonite K10 Tetrahydropyranol 



This work was realized within the Operational Programme Prague—Competitiveness (CZ.2.16/3.1.00/24501) and “National Program of Sustainability“(NPU I LO1613) MSMT- 43760/2015.


  1. 1.
    Hanschke E (1955) Zur Kenntnis der Prinsschen Reaktion (III.). Chem Ber 88:1053–1061CrossRefGoogle Scholar
  2. 2.
    Breugst M, Grée R, Houk KN (2013) Synergistic effects between Lewis and Brønsted acids: application to the Prins cyclization. J Org Chem 78:9892–9897CrossRefPubMedGoogle Scholar
  3. 3.
    Chio FK, Warne J, Gough D, Penny M, Green S, Coles SJ, Hursthouse MB, Jones P (2011) On the choice of Lewis acids for the Prins reaction; two total syntheses of (±)-Civet. Tetrahedron 67:5107–5124CrossRefGoogle Scholar
  4. 4.
    Borkar P, Weghe P, Reddy BVS, Yadav JS, Grée R (2012) Unprecedented synergistic effects between weak Lewis and Brønsted acids in Prins cyclization. Chem Commun 48:9316–9318CrossRefGoogle Scholar
  5. 5.
    Yheng K, Liu X, Qin S, Xie M, Lin M, Hu C, Feng X (2012) Completely OH-selective FeCl3-catalyzed Prins cyclization: highly stereoselective synthesis of 4-OH-tetrahydropyrans. J Am Chem Soc 134:17564–17573CrossRefGoogle Scholar
  6. 6.
    Reddy KR, Rosa IML, Doriguetto AC, Bastos EL, Silva LF Jr (2013) Iodine-catalyzed prins cyclization of homoallylic alcohols and aldehydes. Molecules 18:11100–11130CrossRefPubMedGoogle Scholar
  7. 7.
    Vyskočilová E, Krátká M and Červený L (2015) Prins cyclization of isovaleraldehyde and isoprenol 3rd International Conference on Chemical Technology, Česká společnost průmyslové chemie, pp 27–30Google Scholar
  8. 8.
    Vyskocilova E, Rezkova L, Vrbkova E, Paterova I, Cerveny L (2016) Contribution to elucidation of the mechanism of preparation of 2-isobutyl-4-methyltetrahydro-2H-pyran-4-ol. Res Chem Intermed 42:725–733CrossRefGoogle Scholar
  9. 9.
    Yadav JS, Reddy BVS, Reddy MS, Niranjan N (2004) Eco-friendly heterogeneous solid acids as novel and recyclable catalysts in ionic medium for tetrahydropyranols. J Mol Catal A 210:99–103CrossRefGoogle Scholar
  10. 10.
    Akira U, Yochiharu A, Shigeyoshi T, Kazuki N and Koji M (2005) Process for producing a pyran compound. European Patent 1493737Google Scholar
  11. 11.
    More GP, Rane M, Bhat SV (2012) Efficient Prins cyclization in environmentally benign method using ion exchange resin catalyst. Green Chem Lett Rev 5:13–17CrossRefGoogle Scholar
  12. 12.
    Li G, Gu Y, Ding Y, Yong Z, Hanpeng W, Jianming G, Qiang Y, Liang SL (2004) Wells-Dawson type molybdovanadophosphoric heteropolyacids catalyzed Prins cyclization of alkenes with paraformaldehyde under mild conditions—a facile and efficient method to 1,3-dioxane derivatives. J Mol Catal A 218:147–152CrossRefGoogle Scholar
  13. 13.
    Yadav JS, Reddy BVS, Kumar NGGKS, Aravind S (2008) The ‘aqueous’ Prins cyclization: a diastereoselective synthesis of 4-hydroxytetrahydropyran derivatives. Synthesis 3:395–400CrossRefGoogle Scholar
  14. 14.
    Yadav JS, Reddy BVS, Chaya DN, Kumar NGGK, Naresh P, Jagadeesh B (2009) Heteropoly acid-catalyzed aza-Prins-cyclization: an expeditious synthesis of 4-hydroxypiperidines. Tetrahedron Lett 50:1799–1802CrossRefGoogle Scholar
  15. 15.
    Tadpetch K, Rychnovsky S (2008) Rhenium(VII) catalysis of Prins cyclization reactions. Org Lett 10:4839–4842CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Telalović S, Ramanthan A, Fei Ng J, Maheswari R, Kwakernaak C, Soulimani F, Brouwer HC, Chuah GK, Weckhuzsen BM, Hanefeld U (2011) On the synergistic catalytic properties of bimetallic mesoporous materials containing aluminum and zirconium: the Prins cyclisation of citronellal. Chem Eur J 17:2077–2088CrossRefPubMedGoogle Scholar
  17. 17.
    Vyskočilová E, Krátká M, Veselý M, Vrbková E, Červený L (2016) Prins cyclization for the preparation of 2-isobutyl-4-methyl-tetrahydro-2H-pyran-4-ol using supported heteropoly acids. Res Chem Intermed 42(9):6991–7003CrossRefGoogle Scholar
  18. 18.
    Vyskočilová E, Sekerová L, Paterová I, Krupka J, Veselý M, Červený L (2018) Characterization and use of MoO3 modified alumosilicates in Prins cyclization of isoprenol and isovaleraldehyde. J Porous Mater 25(1):273–281CrossRefGoogle Scholar
  19. 19.
    Sekerová L, Vyskočilová E, Červený L (2017) Prins cyclization of isoprenol with various aldehydes using MoO3/SiO2 as a catalyst. React Kinet Mech Cat 121(1):83–95CrossRefGoogle Scholar
  20. 20.
    Sekerová L, Vyskočilová E, Fantova JS, Paterová I, Krupka J, Červený L (2017) Preparation of 2-isobutyl-4-methyltetrahydro-2H-pyran-4-ol via Prins cyclization using Fe modified silica. Res Chem Intermed 43(8):4943–4958CrossRefGoogle Scholar
  21. 21.
    Baishya G, Sarmah B, Hazarika N (2013) An environmentally benign synthesis of octahydro-2H-chromen-4-ols via modified montmorillonite K10 catalyzed Prins cyclization reaction. Synlett 24(9):1137–1141CrossRefGoogle Scholar
  22. 22.
    Dintzner MR (2013) Montmorillonite K10 clay catalyzed synthesis of 4-aryltetrahydropyrans: a one-pot, multicomponent, environmentally friendly Prins-Friedel–Crafts-type reaction. Synlett 24(9):1091–1092CrossRefGoogle Scholar
  23. 23.
    Kaur N, Kishore D (2012) Montmorillonite: an efficient, heterogeneous and green catalyst for organic synthesis. J Chem Pharm Res 4(2):991–1015Google Scholar
  24. 24.
    Tyagi B, Chudasama CD, Jasra RV (2006) Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochim Acta Part A 64(2):273–278CrossRefGoogle Scholar
  25. 25.
    Kotova M, Vyskočilová E, Červený L (2017) Highly selective hydrogenation of butyl sorbate to butyl cis-hex-3-enoate using Cp*-ruthenium (II) catalyst. Catal Lett 147(7):1665–1672CrossRefGoogle Scholar
  26. 26.
    Nowrouzi F, Thadani AN, Batey RA (2009) Allylation and crotylation of ketones and aldehydes using potassium organotrifluoroborate salts under Lewis acid and montmorillonite K10 catalyzed conditions. Org Lett 11(12):2631–2634CrossRefPubMedGoogle Scholar
  27. 27.
    Dintzner MR, Mondjinou YA, Unger B (2009) Montmorillonite K10 clay-catalyzed synthesis of homoallylic silyl ethers: an efficient and environmentally friendly Hosomi–Sakurai reaction. Tetrahedron Lett 50(48):6639–6641CrossRefGoogle Scholar
  28. 28.
    Lu JM, Shi M (2007) Montmorillonite K-10-catalyzed intramolecular rearrangement of vinylidenecyclopropanes. Tetrahedron 63(32):7545–7549CrossRefGoogle Scholar
  29. 29.
    Azizian J, Karimi AR, Kazemizadeh Z, Mohammadi AA, Mohammadizadeh MR (2005) A novel one-pot synthesis of some new interesting pyrrole derivatives. J Org Chem 70(4):1471–1473CrossRefPubMedGoogle Scholar
  30. 30.
    Bandgar BP, Pandit SS, Sadavarte VS (2001) Montmorillonite K-10 catalyzed synthesis of b-keto esters: condensation of ethyl diazoacetate with aldehydes under mild conditions. Green Chem 3(5):247–249CrossRefGoogle Scholar
  31. 31.
    Emeis CA (1993) Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J Catal 141:347–354CrossRefGoogle Scholar
  32. 32.
    Vyskočilová E, Malý M, Aho A, Krupka J, Červený L (2016) The solvent effect in β-pinene oxide rearrangement. React Kinet Mech Catal 118(1):235–246CrossRefGoogle Scholar
  33. 33.
    Biesekia L, Bertellab F, Treichelc H, Penhad FG, Perghera SBC (2013) Acid treatments of montmorillonite-rich clay for Fe removal using a factorial design method. Mat Res 16(5):1122–1127CrossRefGoogle Scholar
  34. 34.
    Pushpletha P, Rugmini S, Lalithambika M (2005) Correlation between surface properties and catalytic activity. Appl Clay Sci 30:141–153CrossRefGoogle Scholar
  35. 35.
    Tyagi B, Chudasama CD, Jasra RV (2006) Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochim Acta A 64:273–278CrossRefGoogle Scholar
  36. 36.
    Cseri T, Békássy S, Figueras F, Cseke E, Menorval L, Dutartre R (1995) Characterization of clay-based K catalysts and their application in Friede–Crafts alkylation of aromatics. Appl Catal A 132:141–155CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Organic TechnologyUniversity of Chemistry and Technology PraguePrague 6Czech Republic
  2. 2.J. Heyrovský Institute of Physical ChemistryAcademy of Sciences of the Czech RepublicPrague 8Czech Republic

Personalised recommendations