Skip to main content
Log in

Dimethyl ether conversion to olefins in a slurry reactor: the effect of MFI zeolite catalyst acidity and selectivity control

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The textural, acidic and catalytic properties of nanosized samples of commercial MFI zeolites with SiO2/Al2O3 molar ratios of 30, 50 and 80 supplied by Zeolyst Co. and some synthesized nanocrystallites of MFI zeolites with a SiO2/Al2O3 molar ratio of 55 and 80 were compared. It was shown that the SiO2/Al2O3 ratio had no impact on catalyst deactivation in the slurry reactor as in the conventional fixed-bed reactor. Irreversible deactivation was observed only for the samples with an extremely high external surface Brønsted acidity indicating that near-surface secondary processes are responsible in catalyst deactivation. It was shown that the reaction temperature influenced the product selectivity due to change in the contribution of both hydrogen transfer reaction and arene/alkene circles and can be considered to be an efficient tool of selectivity control for DME conversion in the slurry reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang S, Gong Y, Zhang L, Liu Y, Dou T, Xu J, Deng F (2015) Fuel Process Technol 129:130

    Article  CAS  Google Scholar 

  2. Keil JF (1999) Microporous Mesoporous Mater 29:49

    Article  CAS  Google Scholar 

  3. Galadima A, Muraza O (2015) J Nat Gas Sci Eng 25:303

    Article  CAS  Google Scholar 

  4. Prongsawat W, Netivorruksa B, Suriye K, Dokjampa S, Praserthdam P, Panpranot J (2012) J Nat Gas Chem 21:83

    Article  CAS  Google Scholar 

  5. Cai G, Liu Z, Shi R, He Ch, Yang L, Sun Ch, Chang Y (1995) Appl Catal A 125:29

    Article  CAS  Google Scholar 

  6. Olsbye U, Svelle S, Bjørgen M, Beato P, Janssens TV, Joensen F, Bordiga S, Lillerud KP (2012) Angew Chem Int Edit 51:5810

    Article  CAS  Google Scholar 

  7. Hack M, Koss U, Konig P, Rothaemel M, Holtmann H-D (2006) US Patent 7015369

  8. Ishida T, Yanagihara T, Hamasaki A, Yokoyama T, Tokunaga M, Liu X, Ohashi H, Honma T, Oji H (2013) Appl Catal A 458(1):145

    Article  CAS  Google Scholar 

  9. Hajjar Z, Khodadadi A, Mortazavi Y, Tayyebi S, Soltanali S (2016) Fuel 179:79

    Article  CAS  Google Scholar 

  10. Kolesnichenko NV, Kolesnikova EE, Kitaev LE, Biryukova EN, Trukhmanova NI, Khadzhiev SN (2012) Pet Chem 52:155

    Article  CAS  Google Scholar 

  11. Khadzhiev SN, Kolesnichenko NV, Hivrich EN, Kolesnikova EE, Batova TI (2013) Pet Chem 53:225

    Article  CAS  Google Scholar 

  12. Rozovsky AYa, Lin GI, Kotel’nikov VN, Majdurov NP, Petrov VN, Brand BB, Makhlin VA (2004) RU Patent 2220939

  13. Rozovsky AYA, Lin GI, Sobolevsky VS (2003) RU Patent 2218988

  14. Buisson B, Donegan S, Wray D, Parracho A, Gamble J, Caze Ph, Jorda J, Guermeur C (2009) Chem Today 27:12

    CAS  Google Scholar 

  15. Lira A, Tailleur RG (2012) Fuel 97:49

    Article  CAS  Google Scholar 

  16. Pollington SD, Enache DL, Landon P, Meenakshisundaram S, Dimitratos N, Wagland A, Hutchings GJ, Stitt EH (2009) Catal Today 145:169

    Article  CAS  Google Scholar 

  17. Clerici G C E, Belmonte G (2005) GB Patent 2403433

  18. Pintar A, Berčič G, Besson M, Gallezot P (2007) Appl Catal B 47:143

    Article  CAS  Google Scholar 

  19. Khadzhiev SN (2011) Pet Chem 51:1

    Article  CAS  Google Scholar 

  20. Liu Y, Hanaoka T, Miyazawa T, Murata K, Okabe K, Sakanishi K (2009) Fuel Proc Technol 90:901

    Article  CAS  Google Scholar 

  21. Wang T, Wang J, Jin Y (2007) Ind Eng Chem Res 46:5824

    Article  CAS  Google Scholar 

  22. Haghtalab A, Nabipoor M, Farzad S (2012) Fuel Proc Technol 104:73

    Article  CAS  Google Scholar 

  23. Khadzhiev SN, Lyadov AS, Krylova MV, Krylova A (2011) Pet Chem 51:24

    Article  CAS  Google Scholar 

  24. Sadeqzadeh M, Chambrey S, Piche S, Fongarland P, Khodakov AY, Luck F, Curulla-Ferre D, Bousquet J, Schweich D (2013) Catal Today 215:52

    Article  CAS  Google Scholar 

  25. Botes FG, Van de Loosdrecht J, Niemantsverdriet JW (2013) Catal Today 215:112

    Article  CAS  Google Scholar 

  26. Khadzhiev SN (2016) Pet Chem 56:465

    Article  CAS  Google Scholar 

  27. Koohsaryan E, Anbia M (2016) Chinese J Catal 37:447

    Article  CAS  Google Scholar 

  28. Mintova S, Gilson J-P, Valtchev V (2013) Nanoscale 5:6693

    Article  CAS  PubMed  Google Scholar 

  29. Valtchev V, Tosheva L (2013) Chem Rev 113:6734

    Article  CAS  PubMed  Google Scholar 

  30. Ya Yueer, Xiao G, Yahong Zh, Yi Tang (2015) Catal. Sci Technol 5:772

    Google Scholar 

  31. Chen JLH, Li XY (2012) J Mater Chem 22:17381

    Article  CAS  Google Scholar 

  32. Majano G, Darwiche A, Mintova S, Valtchev V (2009) Ind Eng Chem Res 48:7084

    Article  CAS  Google Scholar 

  33. Wang X-D, Wang Y-J, Yang W-L, Dong A-G, Ren N, Xie Z-K, Tang Y (2003) Acta Chim Sinica 63:354

    Google Scholar 

  34. Uillis RR, Kjukhl DE, Benin AI (2009) RU Patent 2377180

  35. Vuong GT, Do TO (2009) Microporous Mesoporous Mater 120:310

    Article  CAS  Google Scholar 

  36. Hu Y, Liu C, Zhang Y, Ren N, Tang Y (2009) Microporous Mesoporous Mater 119:306

    Article  CAS  Google Scholar 

  37. Li C, Wang Y, Shi B, Ren J, Liu X, Wang Y, Guo Y, Lu G (2009) Microporous Macroporous Mater 117:104

    Article  CAS  Google Scholar 

  38. Teng X, Meng W-Y, Ming-Yuan H (2012) Microporous Mesoporous Mater 156:29

    Article  CAS  Google Scholar 

  39. Petrova PN, Okhlopkova AA, Sokolova MD, Isakova TA (2015) Phys Chem Mater Treat 3:57

    Google Scholar 

  40. Nikolaeva LA, Kopylov VE, Burenina ON, Popov SN, Portnyagina VV (2014) Min Inf Anal Bull 9:398

    Google Scholar 

  41. Belaya LA, Doronin VP, Sorokina TP (2009) Catal Ind 3:12–13

    Google Scholar 

  42. Baranchikov AE, Ivanov VK, Tretyakov Y (2007) Russ Chem Rev 76:147

    Article  CAS  Google Scholar 

  43. Khadzhiev SN, Kolesnichenko NV, Ezhova NN, Korosteleva IG, Yashina OV, Hivrich EN (2015) RU Patent 2547838

  44. Kolesnichenko NV, Ezhova NN, Yashina OV (2016) Pet Chem 56:829

    Google Scholar 

  45. Van Grieken R, Sotelo JL, Menéndez JM, Melero JA (2000) Microporous Mesoporous Mater 39:135

    Article  Google Scholar 

  46. Popov AG, Pavlov VS, Ivanova II (2016) J Catal 335:155

    Article  CAS  Google Scholar 

  47. Wang Y, Chen S-L, Gao Y-L, Cao Y-Q, Zhang Q, Chang W-K (2017) ACS Catal 7:5572

    Article  CAS  Google Scholar 

  48. Thommes M, Cychosz KA (2014) Adsorption 20:233

    Article  CAS  Google Scholar 

  49. Kojima M, Rautenbach MW, Connor CTO (1988) J Catal 112:495

    Article  CAS  Google Scholar 

  50. Tamura M, Shimizu KI, Satsuma A (2012) Appl Catal A 433:135

    Article  CAS  Google Scholar 

  51. Lefrancois M, Malbois G (1971) J Catal 20:350

    Article  CAS  Google Scholar 

  52. Basab Ch, Viswanathan B (1999) Catal Today 49:253

    Article  Google Scholar 

  53. Corma A, Fornes V, Forni L, Marquez F, Martiınez-Triguero J, Moscott D (1998) J Catal 179:451–458

    Article  CAS  Google Scholar 

  54. Schulz H (2010) Catal Today 154:183

    Article  CAS  Google Scholar 

  55. Barbera K, Bonino F, Bordiga S, Janssens TVW, Beato P (2011) J Catal 280:196

    Article  CAS  Google Scholar 

  56. Ovsitser O, Schomaecker R, Kondratenko E, Wolfram T, Trunschke A (2012) Catal Today 192:16

    Article  CAS  Google Scholar 

  57. Khadzhiev SN, Magomedova MV, Peresypkina EG (2014) Pet Chem 54:245–269

    Article  CAS  Google Scholar 

  58. Vandichel M, Jeroen DL, Van der Mynsbrugge V, Waroquier M, Van Speybroeck V (2010) J Catal 271:67

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank Russian Science Foundation (Grant No. 15-13-00104) for financial support. V Pavlov thanks Haldor Topsøe A/S for Ph.D. Scholarship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataliya V. Kolesnichenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnichenko, N.V., Pavlov, V.S., Stashenko, A.N. et al. Dimethyl ether conversion to olefins in a slurry reactor: the effect of MFI zeolite catalyst acidity and selectivity control. Reac Kinet Mech Cat 124, 825–838 (2018). https://doi.org/10.1007/s11144-018-1368-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1368-2

Keywords

Navigation