Skip to main content
Log in

More insight on the isothermal spreading of solid MoO3 into ZSM-5 zeolite

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Pure MoO3 undergoes dehydration under helium stream between room temperature and 220 °C before being transformed into MoO2.87 and lost by evaporation at 650 °C. However, in the presence of NH4+–ZSM-5 zeolite (Mo/Al = 1), the dehydration of the mixture and the deammonization of the zeolite take place below 440 °C. In this water–rich atmosphere, a fraction of MoO3 is rehydrated and transformed into gaseous MoO2(OH)2 at 220–440 °C instead of being reduced. Despite the significant Mo weight loss, MoO2(OH)2 (g) reacts with ZSM-5 zeolite and is transformed into polymolybdate species upon 4 h of isothermal exchange at 500 °C. However, when the reaction time is prolonged from 4 to 8 h, the residual MoO3 undergoes an agglomeration before being transformed into mono- and dimolybdate species following 12 h of exchange. The determination of band gap energy by means of the diffuse reflectance spectroscopy allowed the identification of Mo species and the quantification of residual MoO3 (55% of the total Mo), which occupied the zeolite surface (46% of residual MoO3) and the internal cavities (9% of residual MoO3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fu W, Zhang L, Wu D, Xiang M, Zhuo Q, Huang K, Tao Z, Tang T (2015) J Catal 330:423–433

    Article  CAS  Google Scholar 

  2. Yang CC, Yacob S, Kilos BA, Barton DG, Weitz E, Notestein JM (2016) J Catal 338:313–320

    Article  CAS  Google Scholar 

  3. Lai F, Liu X, Li W, Shen F (2010) React Kinet Mech Catal 100:407–415

    CAS  Google Scholar 

  4. Toosi MR, Sabour B, Hamuleh T, Peyrovi MH (2010) React Kinet Mech Catal 101:221–226

    Article  CAS  Google Scholar 

  5. Kosinov N, Coumans FJAG, Uslamin EA, Wijpkema ASG, Mezari B, Hensen EJM (2017) ACS Catal 7:520–529

    Article  CAS  Google Scholar 

  6. Mannei E, Ayari F, Petitto C, Asedegbega-Nieto E, Guerrero-Ruiz AR, Delahay G, Mhamdi M, Ghorbel A (2017) Microporous Mesoporous Mater 241:246–257

    Article  CAS  Google Scholar 

  7. Corma A, Cortés Corberàn V, Fornés V (1986) React Kinet Catal Lett 32:191–197

    Article  CAS  Google Scholar 

  8. Zhu JH (1997) React Kinet Catal Lett 62:39–46

    Article  CAS  Google Scholar 

  9. Zhao L, He P, Jarvis J, Song H (2016) Energy Fuels 30:10330–10340

    Article  CAS  Google Scholar 

  10. Xu Y, Liu S, Guo X, Wang L, Xie M (1995) Catal Lett 30:135–149

    Article  Google Scholar 

  11. Weckhuysen BM, Wang D, Rosynek MP, Lunsford JH (1998) J Catal 175:338–346

    Article  CAS  Google Scholar 

  12. Ismagilov ZR, Matus EV, Tsikoza LT (2008) Energy Environ Sci 1:526–541

    Article  CAS  Google Scholar 

  13. Li S, Zhang C, Kan Q, Wang D, Wu T, Lin L (1999) Appl Catal A 187:199–206

    Article  CAS  Google Scholar 

  14. Dai PSE, Lunsford JH (1980) J Catal 64:173–183

    Article  CAS  Google Scholar 

  15. Ayari F, Mannei E, Asedegbega-Nieto E, Mhamdi M, Guerrero-Ruiz AR, Delahay G, Ghorbel A (2017) Thermochim Acta 655:269–277

    Article  CAS  Google Scholar 

  16. Liu W, Xu Y, Wong ST, Wang L, Qiu J, Yang N (1997) J Mol Catal A 120:257–265

    Article  CAS  Google Scholar 

  17. Borry RW III, Kim YH, Huffsmith A, Reimer JA, Iglesia E (1999) J Phys Chem B 103:5787–5796

    Article  CAS  Google Scholar 

  18. Mannei E, Ayari F, Asedegbega-Nieto E, Mhamdi M, Guerrero-Ruiz AR, Delahay G, Ghorbel A (2017) Thermochim Acta 652:150–159

    Article  CAS  Google Scholar 

  19. Zhang Z, Zhang Q, Jia L, Wang W, Gao X, Gu Y, Gao X, Han Y, Tan Y (2016) Chem Sel 1:6127–6135

    CAS  Google Scholar 

  20. Kosinov N, Coumans FJAG, Li G, Uslamin E, Mezari B, Wijpkema ASG, Pidko EA, Hensen EJM (2017) J Catal 346:125–133

    Article  CAS  Google Scholar 

  21. Burns S, Hargreaves JSJ, Stockenhuber M, Wells RPK (2007) Microporous Mesoporous Mater 104:97–102

    Article  CAS  Google Scholar 

  22. Li W, Meitzner D, Borry RW III, Iglesia E (2000) J Catal 191:373–383

    Article  CAS  Google Scholar 

  23. Lacheen HS, Iglesia E (2005) Phys Chem Chem Phys 7:538–547

    Article  CAS  Google Scholar 

  24. Li B, Li S, Li N, Chen H, Zhang W, Bao X, Lin B (2006) Microporous Mesoporous Mater 88:244–253

    Article  CAS  Google Scholar 

  25. Mosqueira L, Fuentes GA (2002) Mol Phys 100:3055–3057

    Article  CAS  Google Scholar 

  26. Mosqueira L, Gómez SA, Fuentes GA (2004) J Phys 16:S2319–S2327

    CAS  Google Scholar 

  27. Mosqueira L, Angeles-Chavez C, Torres-García E (2011) Mater Chem Phys 126:930–937

    Article  CAS  Google Scholar 

  28. Ayari F, Mhamdi M, Delahay G, Ghorbel A (2009) J Sol Gel Sci Technol 49:170–179

    Article  CAS  Google Scholar 

  29. Ayari F, Mhamdi M, Debecker DP, Gaigneaux EM, Álvarez-Rodríguez J, Guerrero-Ruiz AR, Delahay G, Ghorbel A (2011) J Mol Catal A 339:8–16

    Article  CAS  Google Scholar 

  30. Áyari F, Mhamdi M, Alvarez-Rodríguez J, Guerrero-Ruiz AR, Delahay G, Ghorbel A (2013) Appl Catal B 134–135:367–380

    Article  Google Scholar 

  31. Mannei E, Ayari F, Mhamdi M, Almohalla M, Guerrero Ruiz AR, Delahay G, Ghorbel A (2016) Microporous Mesoporous Mater 219:77–86

    Article  CAS  Google Scholar 

  32. Prilipko AI, Il’in VG, Turutina NV, Nazarenko VA, Mel’nichenko GN (1990) Theor Exp Chem 25:467–470

    Article  Google Scholar 

  33. Ayari F, Mannei E, Asedegbega-Nieto E, Mhamdi M, Guerrero-Ruiz AR, Delahay G, Ghorbel A (2017) J Therm Anal Calorim. https://doi.org/10.1007/s10973-017-6545-4

    Google Scholar 

  34. Murugan R, Ghule A, Bhongale C, Chang H (2000) J Mater Chem 10:2157–2162

    Article  CAS  Google Scholar 

  35. Xiao FS, Zheng S, Sun J, Yu R, Qiu S, Xu R (1998) J Catal 176:474–487

    Article  CAS  Google Scholar 

  36. Wells AF (1975) Structural inorganic chemistry, 4th edn. Oxford University Press, London

    Google Scholar 

  37. Shriver DF, Atkins PW, Langford CH (1990) Inorganic chemistry. Freeman, New York

    Google Scholar 

  38. JCPDS data file No 05–0508

  39. Patterson AL (1939) Phys Rev 56:978–982

    Article  CAS  Google Scholar 

  40. Hussain OH, Rao KS (2003) Mater Chem Phys 80:638–646

    Article  CAS  Google Scholar 

  41. Zingg DS, Makovsky LE, Tischer RE, Brown FR, Hercules DM (1980) J Phys Chem 84:2898–2913

    Article  CAS  Google Scholar 

  42. Naumkin AV, Vass AK, Gaarenstroom SW, Powell CJ (2012) XPS database, NIST Standard Reference Database 20, Version 4.1, 2012

  43. Lede EJ, Requejo FG, Pawelec B, Fierro JLG (2002) J Phys Chem B 106:7824–7831

    Article  CAS  Google Scholar 

  44. Arnoldy P, Franken MC, Scheffer B, Moulijn JA (1985) J Catal 96:381–395

    Article  CAS  Google Scholar 

  45. Arnoldy P, de Jonge JCM, Moulijn JA (1985) J Phys Chem 89:4517–4526

    Article  CAS  Google Scholar 

  46. Bhaskar T, Reddy KR, Kumar CP, Murthy MRVS, Chary KVR (2001) Appl Catal A 211:189–201

    Article  CAS  Google Scholar 

  47. Khan GA, Hogarth CA (1991) J Mater Sci 26:412–416

    Article  CAS  Google Scholar 

  48. Weber RS (1995) J Catal 151:470–474

    Article  CAS  Google Scholar 

  49. Braun S, Appel LG, Schmal M (2002) Appl Surf Sci 201:227–235

    Article  CAS  Google Scholar 

  50. Anwar M, Hogarth CA (1988) Phys Stat Sol A 109:469–478

    Article  CAS  Google Scholar 

  51. Donnadieu A, Davazoglou D, Abdellaoui A (1988) Thin Solid Films 164:333–338

    Article  Google Scholar 

  52. Anwar M, Hogarth CA (1989) J Mater Sci 24:3673–3678

    Article  CAS  Google Scholar 

  53. Chithambararaj A, Sanjini NS, Velmathi S, Chandra Bose A (2013) Phys Chem Chem Phys 15:14761–14769

    Article  CAS  Google Scholar 

  54. Essid S, Ayari F, Bulánek R, Vaculík J, Mhamdi M, Delahay G, Ghorbel A (2017) Catal Today. https://doi.org/10.1016/j.cattod.2017.08.027

    Google Scholar 

  55. Seguin L, Figlarz M, Cavagnat R, Lassègues JC (1995) Spectrochim Acta Part A 51:1323–1344

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faouzi Ayari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1479 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayari, F., Mannei, E., Asedegbega-Nieto, E. et al. More insight on the isothermal spreading of solid MoO3 into ZSM-5 zeolite. Reac Kinet Mech Cat 124, 419–436 (2018). https://doi.org/10.1007/s11144-018-1357-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1357-5

Keywords

Navigation