Skip to main content
Log in

The effect of different solvents on graphene supported cobalt Fischer-Tropsch catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Graphene supported Fischer-Tropsch cobalt catalysts are prepared via hydrothermal synthesis, and the effect of different solvents, water and ethanol used in the preparation on the structure and catalyst activity are discussed. The catalysts are characterized by differential thermogravimetric analysis (DTA), nitrogen physisorption, X-ray diffraction (XRD), Raman spectrum, hydrogen-temperature program reduction (H2-TPR), ammonia temperature programmed desorption (NH3-TPD), scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). The results indicate that the catalyst prepared using ethanol as a solvent in a fixed-bed shows better thermostability, lower reduction temperature, smaller crystallite of Co3O4 and relatively narrower and more uniform distribution of Co3O4 crystallite than that prepared in water. The catalyst prepared using ethanol as a solvent exhibits a higher CO conversion and higher C5+ selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ordomsky VV, Carvalho A, Legras B (2016) Catal Today 275:84

    Article  CAS  Google Scholar 

  2. Mehta S, Deshmane V, Zhao S (2014) Ind Eng Chem Res 53:16245

    Article  CAS  Google Scholar 

  3. Yao Y, Hildebrandt D, Glasser D (2010) Ind Eng Chem Res 49:11061

    Article  CAS  Google Scholar 

  4. Li Z, Wu J, Wu L (2017) Reaction kinetics. Mech Cat 122:887

    CAS  Google Scholar 

  5. Alihellal D, Chibane L (2016) Reaction kinetics. Mecha Cat 117:605

    CAS  Google Scholar 

  6. Rønning M, Nicholson DG, Holmen A (2001) Catal Lett 72:141

    Article  Google Scholar 

  7. Jacobs G, Ji Y, Davis BH et al (2007) Appl Catal A 333:177

    Article  CAS  Google Scholar 

  8. Lapidus A, Krylova A, Rathousky J et al (1992) Appl Catal A 80:1

    Article  CAS  Google Scholar 

  9. Najafabadi AT, Khodadadi AA, Parnian MJ (2016) Appl Catal A 511:31

    Article  Google Scholar 

  10. Trépanier M, Dalai AK, Abatzoglou N (2010) Appl Catal A 374:79

    Article  Google Scholar 

  11. Li Y, Zhou Z, Yu G (2010) The J Phys Chem C 114:6250

    Article  CAS  Google Scholar 

  12. Li J, Tang X, Yi H (2017) Appl Surf Sci 412:37

    Article  CAS  Google Scholar 

  13. Zhang C, Lv W, Yang Q (2012) Appl Surf Sci 258:7795

    Article  CAS  Google Scholar 

  14. Li Y, Yu Y, Wang JG (2012) Appl Catal B 125:189

    Article  CAS  Google Scholar 

  15. Xia QH, Ge HQ, Ye CP (2005) Chem Rev 105:1603

    Article  CAS  Google Scholar 

  16. Yan XY, Tong XL, Zhang YF (2012) Chem Commun 48:1892

    Article  CAS  Google Scholar 

  17. Fu Y, Wang X (2011) Ind Eng Chem Res 50:7210

    Article  CAS  Google Scholar 

  18. Xue T, Jiang S, Qu Y (2012) AngewandteChemie 124:3888

    Google Scholar 

  19. Guo XN, Jiao ZF, Jin GQ (2015) ACS Catal 5:3836

    Article  CAS  Google Scholar 

  20. Singh SK, Singh MK, Kulkarni PP (2012) ACS Nano 6:2731

    Article  CAS  Google Scholar 

  21. Julkapli NM, Bagheri S (2015) Int J Hydrog Energy 40:948

    Article  CAS  Google Scholar 

  22. Xing C, Ai P, Zhang P (2016) J Energy Chem 25:994

    Article  Google Scholar 

  23. Iglesia E (1997) Appl Catal A 161:59

    Article  CAS  Google Scholar 

  24. Borg Ø, Dietzel PDC, Spjelkavik AI (2008) J Catal 259:161

    Article  CAS  Google Scholar 

  25. Bezemer GL, Bitter JH, Kuipers HPCE (2006) J Am Chem Soc 128:3956

    Article  CAS  Google Scholar 

  26. Jacobs G, Das TK, Zhang Y (2002) Appl Catal A 233:263

    Article  CAS  Google Scholar 

  27. Graham UM, Jacobs G, Gnanamani MK (2014) ACS Catal 4:1662

    Article  CAS  Google Scholar 

  28. Pendyala VRR, Jacobs G, Bertaux C (2016) J Catal 337:80

    Article  CAS  Google Scholar 

  29. Yang J, Zhao B, Zhao H (2013) Acta Chim Sinica 71:1365

    Article  CAS  Google Scholar 

  30. Karimi S, Tavasoli A, Mortazavi Y (2015) Appl Catal A 499:188

    Article  CAS  Google Scholar 

  31. Chernyak SA, Selyaev GE, Suslova EV (2016) Kinet Catl 57:640

    Article  CAS  Google Scholar 

  32. Trépanier M, Tavasoli A, Dalai AK (2009) Appl Catal A 353:193

    Article  Google Scholar 

  33. Guo S, Dong S, Wang E (2009) ACS Nano 4:547

    Article  Google Scholar 

  34. Zhao H, Zhu Q, Gao Y (2013) Appl Catal A 456:233

    Article  CAS  Google Scholar 

  35. Karimi S, Tavasoli A, Mortazavi Y (2015) Chem Eng Res Des 104:713

    Article  CAS  Google Scholar 

  36. Zaman M, Khodadi A, Mortazavi Y (2009) Fuel Process Technol 90:1214

    Article  CAS  Google Scholar 

  37. Borg Ø, Eri S, Blekkan EA (2007) J Catal 248:89

    Article  CAS  Google Scholar 

  38. Storsæter S, Borg Ø, Blekkan EA (2005) Catal Today 100:343

    Article  Google Scholar 

  39. Chu W, Xu J, Hong J (2015) Catal Today 256:41

    Article  CAS  Google Scholar 

  40. Wang S, Yin Q, Guo J (2013) Fuel 108:597

    Article  CAS  Google Scholar 

  41. Bessell S (1993) Appl Catal A 96:253

    Article  CAS  Google Scholar 

  42. Ali S, Zabidi NAM, Al-Marri MJ (2017) Mater Today Commun 10:67

    Article  CAS  Google Scholar 

  43. Fratalocchi L, Visconti CG, Lietti L (2016) Catal Sci Technol 6:6431

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, M., Li, H. The effect of different solvents on graphene supported cobalt Fischer-Tropsch catalyst. Reac Kinet Mech Cat 124, 279–291 (2018). https://doi.org/10.1007/s11144-018-1342-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1342-z

Keywords

Navigation