Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 126, Issue 2, pp 951–962 | Cite as

Temperature programmed surface reaction test of Co–Ni bimetallic aerogel catalysts for methane reforming

  • Lin Chen
  • Qingyu Huang
  • Duchao ZhangEmail author
  • Weifeng Liu
  • Tianzu Yang
Article
  • 152 Downloads

Abstract

CH4 temperature programmed surface reaction (TPSR) and CH4 oxy-CO2 TPSR are applied to test Ni (10Ni), Co (10Co) and Co–Ni (5Co5Ni) aerogel catalysts in the CH4 oxy-CO2 reforming reaction. Monometallic 10Ni outperforms 10Co and bimetallic 5Co5Ni aerogel catalysts in the CH4-TPSR test. The CH4 activation temperature (AT) of 10Ni and 5Co5Ni is 160 °C lower than that of 10Co, indicating that CH4 can be activated more effectively on 10Ni and 5Co5Ni. As a result, the critical temperature (CT) of 10Ni and 5Co5Ni in the CH4 oxy-CO2 TPSR test are 680 °C and 695 °C, whereas 10Co shows no CT in the test. The CH4 oxy-CO2 TPSR test also reveals that although CTs of the catalyst are independent of the reduction pretreatment, the catalytic oxidation abilities for carbon species are greatly promoted after reduction. The calcined samples activate CH4 via the combination of combustion and partial oxidation, while the reduced sample activate CH4 mainly via combustion. Furthermore, the reduced 5Co5Ni activates and completes CH4 oxidation at temperatures 60 °C and 128 °C lower than those of 10Ni, suggesting its higher ability to catalyze the oxidation of carbon species generated in CH4 reforming, which could be account for its better performance than those of the monometallic catalysts.

Keywords

Methane reforming Hydrogen production Bimetallic aerogel catalyst Temperature programmed surface reaction 

Notes

Acknowledgements

The financial supports from National Science Foundation of China (No. 21306231), China Scholarship Council (No. 201706375005), China Postdoctoral Science Foundation (No. 2018M632988) and Natural Science Foundation of Hunan province (No. 2018JJ3662) are gratefully acknowledged.

Supplementary material

11144_2018_1531_MOESM1_ESM.docx (3 mb)
Supplementary material 1 (DOCX 3107 kb)

References

  1. 1.
    Chein RY, Chen YC, Yu CT, Chung JN (2015) J Nat Gas Sci Eng 26:617–629CrossRefGoogle Scholar
  2. 2.
    Choudhary TV, Choudhary VR (2008) Angew Chem Int Ed 47:1828–1847CrossRefGoogle Scholar
  3. 3.
    Freitas ACD, Guirardello R (2012) J Nat Gas Chem 21:571–580CrossRefGoogle Scholar
  4. 4.
    Pasel J, Wohlrab S, Kreft S, Rotov M, Löhken K, Peters R, Stolten D (2016) J Power Sources 325:51–63CrossRefGoogle Scholar
  5. 5.
    Shojaeepour F, Kazemzad M, Rahimpour MR, Khanlarkhani A, Hafizi A (2018) Reac Kinet Mech Cat 124:229–245CrossRefGoogle Scholar
  6. 6.
    Abdollahifar M, Haghighi M, Babaluo AA (2014) J Ind Eng Chem 20:1845–1851CrossRefGoogle Scholar
  7. 7.
    Odedairo T, Chen JL, Zhu ZH (2013) J Phys Chem C 117:21288–21302CrossRefGoogle Scholar
  8. 8.
    Chen L, Zhu Q, Hao Z, Zhang T, Xie Z (2010) Int J Hydrogen Energy 35:8494–8502CrossRefGoogle Scholar
  9. 9.
    Hao Z, Zhu Q, Jiang Z, Li H (2008) Powder Technol 183:46–52CrossRefGoogle Scholar
  10. 10.
    Hao Z, Zhu Q, Jiang Z, Hou B, Li H (2009) Fuel Process Technol 90:113–121CrossRefGoogle Scholar
  11. 11.
    Jiang Z, Liao X, Zhao Y (2013) Appl Petrochem Res 3:91–99CrossRefGoogle Scholar
  12. 12.
    Yang T, Chen W, Chen L, Liu W, Zhang D (2016) J CO2 Util 16:130–137CrossRefGoogle Scholar
  13. 13.
    Tang S, Ji L, Lin J, Zeng HC, Tan KL, Li K (2000) J Catal 194:424–430CrossRefGoogle Scholar
  14. 14.
    Wang Y, Fang Q, Shen W, Zhu Z, Fang Y (2018) Reac Kinet Mech Cat 125:127–139CrossRefGoogle Scholar
  15. 15.
    Zhang X, Fang X, Feng X, Li X, Liu W, Xu X, Zhang N, Gao Z, Wang X, Zhou W (2017) Catal Sci Technol 7:2729–2743CrossRefGoogle Scholar
  16. 16.
    E-h Yang, Y-s Noh, Ramesh S, Lim SS, Moon DJ (2015) Fuel Process Technol 134:404–413CrossRefGoogle Scholar
  17. 17.
    Huang X, Xue G, Wang C, Zhao N, Sun N, Wei W, Sun Y (2016) Catal Sci Technol 6:449–459CrossRefGoogle Scholar
  18. 18.
    Sengupta S, Deo G (2015) J CO2 Util 10:67–77CrossRefGoogle Scholar
  19. 19.
    Li L, Guillen DP, Neelameggham NR, Zhang L, Zhu J, Xuan L, Basu SN, Haque N, Wang T, Verhulst DE, Pandey A (2016) Energy Technol 2016:173–179Google Scholar
  20. 20.
    Zhang J, Wang H, Dalai AK (2007) J Catal 249:300–310CrossRefGoogle Scholar
  21. 21.
    Koh ACW, Chen L, Leong WK, Johnson BFG, Khimyak T, Lin J (2007) Int J Hydrogen Energy 32:725–730CrossRefGoogle Scholar
  22. 22.
    Pinilla JL, de Llobet S, Moliner R, Suelves I (2017) Appl Catal B 200:255–264CrossRefGoogle Scholar
  23. 23.
    Chen L, Zhu Q, Wu R (2011) Int J Hydrogen Energy 36:2128–2136CrossRefGoogle Scholar
  24. 24.
    Rodrigues L, Silva RB, Rocha MGC, Bargiela P, Noronha FB, Brandao ST (2012) Catal Today 197:137–143CrossRefGoogle Scholar
  25. 25.
    De Rogatis L, Montini T, Cognigni A, Olivi L, Fornasiero P (2009) Catal Today 145:176–185CrossRefGoogle Scholar
  26. 26.
    Chen L, Hao Z, Yang T, Liu W, Zhang D (2014) Int J Hydrogen Energy 39:15474–15481CrossRefGoogle Scholar
  27. 27.
    Osaki T, Tanaka T, Horiuchi T, Sugiyama T, Suzuki K, Mori T (2000) Appl Organomet Chem 14:789–793CrossRefGoogle Scholar
  28. 28.
    Nagaoka K, Takanabe K, K-I Aika (2004) Appl Catal A 268:151–158CrossRefGoogle Scholar
  29. 29.
    Jin R, Chen Y, Li W, Cui W, Ji Y, Yu C, Jiang Y (2000) Appl Catal A 201:71–80CrossRefGoogle Scholar
  30. 30.
    Garcia V, Caldes MT, Joubert O, Gautron E, Mondragon F, Moreno A (2010) Catal Today 157:177–182CrossRefGoogle Scholar
  31. 31.
    Osaki T, Mori T (2009) J Non-Cryst Solids 355:1590–1596CrossRefGoogle Scholar
  32. 32.
    Wang H, Miller JT, Shakouri M, Xi C, Wu T, Zhao H, Akatay MC (2013) Catal Today 207:3–12CrossRefGoogle Scholar
  33. 33.
    Takanabe K, Nagaoka K, Nariai K, K-i Aika (2005) J Catal 232:268–275CrossRefGoogle Scholar
  34. 34.
    Son IH, Lee SJ, Song IY, Jeon WS, Jung I, Yun DJ, Jeong D-W, Shim J-O, Jang W-J, Roh H-S (2014) Fuel 136:194–200CrossRefGoogle Scholar
  35. 35.
    Luisetto I, Tuti S, Di Bartolomeo E (2012) Int J Hydrogen Energy 37:15992–15999CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Lin Chen
    • 1
    • 2
  • Qingyu Huang
    • 1
  • Duchao Zhang
    • 1
    Email author
  • Weifeng Liu
    • 1
  • Tianzu Yang
    • 1
  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina
  2. 2.Post-Doctoral Joint Research CenterHunan Jinwang Bismuth Industry Co., Ltd.ChenzhouChina

Personalised recommendations