Skip to main content

Enthalpy-entropy compensation effect and other aspects of isoparametricity in reactions between trans-2,3-bis(3-bromo-5-nitrophenyl)oxirane and arenesulfonic acids

Abstract

It was found that as a result of the non-additivity (interaction) of joint effects of structure and temperature on the rate and free energy of activation of the reactions between trans-2,3-bis(3-bromo-5-nitrophenyl)oxirane and Y-substituted arenesulfonic acids YC6H4SO3H in a mixture of dioxane with 1,2-dichloroethane (7 : 3/v : v) at 265, 281, and 298 K, the cross reaction series exhibits isoparametric properties. At a temperature of 265 K, close to the isoparametric temperature point 262 K (isokinetic temperature), the free energy of activation and the rate of oxirane ring opening process do not depend on the structure of the substituent Y due to the enthalpy-entropy compensation effect. At the isoparametric point with respect to the constant of substituent Y (σY = 0.20), the free activation energy does not depend on temperature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Krug RR, Hunter WG, Grieger RA (1976) Statistical interpretation of enthalpy–entropy compensation. Nature 261:566–567. https://doi.org/10.1038/261566a0

    CAS  Article  Google Scholar 

  2. Liu L, Guo Q-X (2001) Isokinetic relationship, isoequilibrium relationship, and enthalpy—entropy compensation. Chem Rev 101(3):673–696. https://doi.org/10.1021/cr990416z

    CAS  Article  Google Scholar 

  3. Sharp K (2001) Entropy—enthalpy compensation: Fact or artifact? Protein Sci 10(3):661–667. https://doi.org/10.1110/ps.37801

    CAS  Article  Google Scholar 

  4. Cornish-Bowden A (2002) Enthalpy-entropy compensation: a phantom phenomenon. J Biosci 27(2):121–126. https://doi.org/10.1007/BF02703768

    Article  Google Scholar 

  5. Starikov EB, Norden B (2007) Enthalpy—entropy compensation: a phantom or something useful. J Phys Chem B 111(51):14431–14435. https://doi.org/10.1021/jp075784i

    CAS  Article  Google Scholar 

  6. Norwisz J, Musielak T (2007) Compensation low again. J Therm Anal Calorim 88(3):751–755. https://doi.org/10.1007/s10973-006-8139-4

    CAS  Article  Google Scholar 

  7. Barrie PJ (2012) The mathematical origins of the kinetic compensation effect: 1. the effect of random experimental errors. Phys Chem Chem Phys 14:318–326. https://doi.org/10.1039/c1cp22666e

    CAS  Article  Google Scholar 

  8. Barrie PJ (2012) The mathematical origins of the kinetic compensation effect: 2. the effect of systematic errors. Phys Chem Chem Phys 14:327–336. https://doi.org/10.1039/c1cp22667c

    CAS  Article  Google Scholar 

  9. Yelon A, Sacher E, Linert W (2012) Comment on “The mathematical origins of the kinetic compensation effect” Parts 1 and 2 by P. J. Barrie, Phys. Chem. Chem. Phys., 2012, 14, 318 and 327. Phys Chem Chem Phys 14:8232–8234. https://doi.org/10.1039/c2cp40618g

  10. Barrie PJ (2012) Reply to ‘Comment on “The mathematical origins of the kinetic compensation effect” Parts 1 and 2 by A. Yelon, E. Sacher and W. Linert, Phys. Chem. Chem. Phys., 2012, 14, https://doi.org/10.1039/c2cp40618g. Phys Chem Chem Phys 14:8235–8236. https://doi.org/10.1039/c2cp41022b

  11. Koudriavtsev AB, Linert W (2013) Do experimental errors really cause isoequilibrium and isokinetic relationships? MATCH Commun Math Comput Chem 70:7–28

    CAS  Google Scholar 

  12. Perez-Benito JF, Mulero-Raichs M (2016) Enthalpy–entropy compensation effect in chemical kinetics and experimental errors: a numerical simulation approach. J Phys Chem A 120(39):7598–7609. https://doi.org/10.1021/acs.jpca.6b08079

    CAS  Article  Google Scholar 

  13. Pan A, Biswas T, Rakshit AK, Moulik SP (2015) Enthalpy-entropy compensation (EEC) effect: a revisit. J Phys Chem B 119(52):15876–15884. https://doi.org/10.1021/acs.jpcb.5b09925

    CAS  Article  Google Scholar 

  14. Pan A, Kar T, Rakshit AK, Moulik SP (2016) Enthalpy—entropy compensation (EEC) effect: decisive role of free energy. J Phys Chem B 120(40):10531–10539. https://doi.org/10.1021/acs.jpcb.6b05890

    CAS  Article  Google Scholar 

  15. Cornish-Bowden A (2017) Enthalpy–entropy compensation and the isokinetic temperature in enzyme catalysis. J Biosci 42(4):665–670. https://doi.org/10.1007/s12038-017-9719-0

  16. Pail’m VA (1977) Bases of the quantitative theory of organic reactions. Khimiya, Leningrad

    Google Scholar 

  17. Linert W, Jameson RF (1989) The isokinetic relationship. Chem Soc Rev 18:477–505. https://doi.org/10.1039/cs9891800477

  18. Linert W (1994) Mechanistic and structural investigations based on the isokinetic relationship. Chem Soc Rev 23(6):429–438. https://doi.org/10.1039/CS9942300429

    CAS  Article  Google Scholar 

  19. Shpan’ko IV, Sadovaya IV (2010) Enthalpy–entropy compensation effect in reactions of 3,5-dinitrophenyloxiran with arenesulfonic acids: experimental evidence of the phenomenon of isoparametricity. Theoret Experim Chem 46(3):176–181. https://doi.org/10.1007/s11237-010-9136-z

    Article  Google Scholar 

  20. Shpan’ko IV, Sadovaya IV (2011) Joint effect of structure and temperature on the rates of the reactions of 3,5-dinitrophenyloxirane with arenesulfonic acids: compensation effect and isoparametricity. Kinet Catal 52(5):647–653. https://doi.org/10.1134/S0023158411050132

    Article  Google Scholar 

  21. Shpan’ko IV, Sadovaya IV (2016) Compensation effect in reactions between trans-4,4′-dinitrostilbene oxide and arylsulfonic acids. Russ J Phys Chem A 90(12):2332–2338. https://doi.org/10.1134/S0036024416120268

    Article  Google Scholar 

  22. Bergmann E, Hervey J (1929) Über das Auftreten von freien substituierten Methylenen bei chemischen Reaktionen. Chem Ber 62(4):893–916. https://doi.org/10.1002/cber.19290620420

    Article  Google Scholar 

  23. Shpan’ko IV, Sadovaya IV (2016) Phenomenon of isoparametricity in reactions of trans-2,3-diaryloxiranes with arenesulfonic acids. Mechanistic interpretation. Russ J Gen Chem 86(11):2418–2422. https://doi.org/10.1134/S1070363216110037

    Article  Google Scholar 

  24. Connors KA (1990) Chemical kinetics: the study of reaction rates in solution. VCH, New York. https://doi.org/10.1002/bbpc.19910950943

    Google Scholar 

  25. McBane GC (1998) Chemistry from telephone numbers: the false isokinetic relationship. J Chem Educ 75(7):919–922. https://doi.org/10.1021/ed075p919

    CAS  Article  Google Scholar 

  26. Shpan’ko IV, Sadovaya IV (2013) Isoparametricity paradox in the pyridine-catalyzed reaction of phenyloxirane with 3-nitrobenzoic acid. Russ J Phys Chem A 87(12):1955–1959. https://doi.org/10.1134/S0036024413120224

    Article  Google Scholar 

  27. Shpan’ko IV, Sadovaya IV (2014) Isoparametricity phenomenon and kinetic enthalpy–entropy compensation effect: experimental evidence obtained by investigating pyridine-catalyzed reactions of phenyloxirane with benzoic acids. Kinet Catal 55(1):56–63. https://doi.org/10.1134/S002315841401011X

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Shpan’ko.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shpan’ko, I., Sadovaya, I. Enthalpy-entropy compensation effect and other aspects of isoparametricity in reactions between trans-2,3-bis(3-bromo-5-nitrophenyl)oxirane and arenesulfonic acids. Reac Kinet Mech Cat 123, 473–484 (2018). https://doi.org/10.1007/s11144-017-1340-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1340-6

Keywords

  • Oxirane ring opening
  • trans-2,3-bis(3-bromo-5-nitrophenyl)oxirane
  • Arenesulfonic acids
  • Isoparametricity phenomenon
  • Compensation effect