Skip to main content
Log in

Study of the performance of amino-functionalized ordered mesoporous carbon in the transesterification of soybean oil

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, the synthesis of the amino-functionalized mesoporous carbon resulted from organic–inorganic self-assembly reaction of triblock copolymer P123, sucrose and silica was carried out. The mesoporous carbons with desirable textural properties such as BET surface area of 956 m2/g, average pore diameter of 4.7 nm and pore volume of 1.07 cm3/g were obtained. Their surface was modified and functionalized with amine groups. Also, small angle powder X-ray diffraction (XRD) confirmed the hexagonal order of porous structure and Fourier transform infrared (FT-IR) analysis of catalyst indicated presence of amine functional groups onto the surface. FESEM and TEM imaging for the purpose of morphological and structural order analysis have been carried out. The performance of the prepared catalysts was evaluated in the production of biodiesel through transesterification of soybean oil with methanol. Gas chromatography (GC) analysis of biodiesel samples demonstrated that at the temperature of 64 °C, methanol to oil molar ratio of 24:1 and 2 wt% of catalyst loading (based on oil used), about 91% of triglycerides were converted to methyl esters (biodiesel) after 6 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lam MK, Lee KT, Mohamed AR (2010) Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnology advances, vol 28. Elsevier Inc. https://doi.org/10.1016/j.biotechadv.2010.03.002

  2. Guldhe A, Singh B, Mutanda T, Permaul K, Bux F (2015) Advances in synthesis of biodiesel via enzyme catalysis: novel and sustainable approaches. Renew Sustain Energy Rev 41:1447–1464

    Article  CAS  Google Scholar 

  3. Manríquez-Ramírez M, Gómez R, Hernández-Cortez JG, Zúñiga-Moreno A, Reza-San Germán CM, Flores-Valle SO (2013) Advances in the transesterification of triglycerides to biodiesel using MgO–NaOH, MgO–KOH and MgO–CeO2 as solid basic catalysts. Catal Today 212:23–30. https://doi.org/10.1016/j.cattod.2012.11.005

    Article  Google Scholar 

  4. Zhang L, Guo W, Liu D, Yao J, Ji L, Xu N, Min E (2008) Low boiling point organic amine-catalyzed transesterification for biodiesel production. Energy Fuels 22:1353–1357. https://doi.org/10.1021/ef700636u

    Article  CAS  Google Scholar 

  5. Crabbe E, Nolasco-Hipolito C, Kobayashi G, Sonomoto K, Ishizaki A (2001) Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties. Process Biochem 37:65–71. https://doi.org/10.1016/S0032-9592(01)00178-9

    Article  CAS  Google Scholar 

  6. Abreu FR, Lima DG, Hamú EH, Wolf C, Suarez PAZ (2004) Utilization of metal complexes as catalysts in the transesterification of Brazilian vegetable oils with different alcohols. J Mol Catal A: Chem 209:29–33. https://doi.org/10.1016/j.molcata.2003.08.003

    Article  CAS  Google Scholar 

  7. Chen SY, Mochizuki T, Abe Y, Toba M, Yoshimura Y, Somwongsa P, Lao-ubol S (2016) Carbonaceous Ti-incorporated SBA-15 with enhanced activity and durability for high-quality biodiesel production: synthesis and utilization of the P123 template as carbon source. Appl Catal B 181:800–809. https://doi.org/10.1016/j.apcatb.2015.08.053

    Article  CAS  Google Scholar 

  8. Sivasamy A, Cheah KY, Fornasiero P, Kemausuor F, Zinoviev S, Miertus S (2009) Catalytic applications in the production of biodiesel from vegetable oils. Chemsuschem 2(4):278–300

    Article  CAS  Google Scholar 

  9. Lee AF, Wilson K (2015) Recent developments in heterogeneous catalysis for the sustainable production of biodiesel. Catal Today 242:3–18

    Article  CAS  Google Scholar 

  10. Helwani Z, Othman MR, Aziz N, Kim J, Fernando WJN (2009) Solid heterogeneous catalysts for transesterification of triglycerides with methanol: a review. Appl Catal A 363:1–10

    Article  CAS  Google Scholar 

  11. Tamborini LH, Casco ME, Militello MP, Silvestre-Albero J, Barbero CA, Acevedo DF (2016) Sulfonated porous carbon catalysts for biodiesel production: clear effect of the carbon particle size on the catalyst synthesis and properties. Fuel Process Technol 149:209–217

    Article  CAS  Google Scholar 

  12. Kundu SK, Bhaumik A (2015) Pyrene-based porous organic polymers as efficient catalytic support for the synthesis of biodiesels at room temperature. ACS Sustain Chem Eng 3:1715–1723

    Article  CAS  Google Scholar 

  13. Bhunia S, Banerjee B, Bhaumik A (2015) A new hypercrosslinked supermicroporous polymer, with scope for sulfonation, and its catalytic potential for the efficient synthesis of biodiesel at room temperature. Chem Commun 51:5020–5023

    Article  CAS  Google Scholar 

  14. Farzaneh F, Moghzi F, Rashtizadeh E (2016) Zn (II) coordination polymer as a bifunctional catalyst for biodiesel production from soybean oil. Reac Kinet Mech Cat 118(2):509–521

    Article  CAS  Google Scholar 

  15. Kouzu M, Kasuno T, Tajika M, Sugimoto Y, Yamanaka S, Hidaka J (2008) Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel 87:2798–2806. https://doi.org/10.1016/j.fuel.2007.10.019

    Article  CAS  Google Scholar 

  16. Goudarzi F, Izadbakhsh A (2017) Evaluation of K/SnO2 performance as a solid catalyst in the trans-esterification of a mixed plant oil. React Kinet Mech Catal 121:539–553

    Article  CAS  Google Scholar 

  17. Zabeti M, Wan Daud WMA, Aroua MK (2009) Activity of solid catalysts for biodiesel production: a review. Fuel Process Technol 90:770–777. https://doi.org/10.1016/j.fuproc.2009.03.010

    Article  CAS  Google Scholar 

  18. Yu D, Nagelli E, Du F, Dai L (2010) Metal-free carbon nanomaterials become more active than metal catalysts and last longer. J Phys Chem Lett 1:2165–2173

    Article  CAS  Google Scholar 

  19. Jin X, Balasubramanian VV, Selvan ST, Sawant DP, Chari MA, GeQ Lu, Vinu A (2009) Highly ordered mesoporous carbon nitride nanoparticles with high nitrogen content: a metal-free basic catalyst. Angew Chem 121:8024–8027

    Article  Google Scholar 

  20. Yuan C, Chen W, Yan L (2012) Amino-grafted graphene as a stable and metal-free solid basic catalyst. J Mater Chem 22:7456–7460

    Article  CAS  Google Scholar 

  21. Su DS, Zhang J, Frank B, Thomas A, Wang X, Paraknowitsch J, Schlögl R (2010) Metal-free heterogeneous catalysis for sustainable chemistry. Chemsuschem 3:169–180

    Article  CAS  Google Scholar 

  22. Zu Y, Liu G, Wang Z, Shi J, Zhang M, Zhang W, Jia M (2010) CaO supported on porous carbon as highly efficient heterogeneous catalysts for transesterification of triacetin with methanol. Energy Fuels 24:3810–3816. https://doi.org/10.1021/ef100419m

    Article  CAS  Google Scholar 

  23. Konwar LJ, Boro J, Deka D (2014) Review on latest developments in biodiesel production using carbon-based catalysts. Renew Sustain Energy Rev 29:546–564

    Article  CAS  Google Scholar 

  24. Yang Y, Chiang K, Burke N (2011) Porous carbon-supported catalysts for energy and environmental applications: a short review. Catal Today 178:197–205

    Article  CAS  Google Scholar 

  25. Zhang B, Zhou Q, Wang Y, Song N, Ni L (2017) Synthesis of ordered mesoporous carbon using m-Diethynylbenzene as a new precursor. Mater Lett 189:317–320

    Article  CAS  Google Scholar 

  26. Oschatz M, Thieme S, Borchardt L, Lohe MR, Biemelt T, Brückner J, Althues H, Kaskel S (2013) A new route for the preparation of mesoporous carbon materials with high performance in lithium–sulphur battery cathodes. Chem Commun 49:5832–5834

    Article  CAS  Google Scholar 

  27. Li J, Liang Y, Dou B, Ma C, Lu R, Hao Z, Xie Q, Luan Z, Li K (2013) Nanocasting synthesis of graphitized ordered mesoporous carbon using Fe-coated SBA-15 template. Mater Chem Phys 138:484–489

    Article  CAS  Google Scholar 

  28. Han B-H, Zhou W, Sayari A (2003) Direct preparation of nanoporous carbon by nanocasting. J Am Chem Soc 125:3444–3445

    Article  CAS  Google Scholar 

  29. Lu A-H, Schüth F (2005) Nanocasting pathways to create ordered mesoporous solids. C R Chim 8:609–620

    Article  CAS  Google Scholar 

  30. Ryoo R, Joo SH, Jun S (1999) Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J Phys Chem B 103:7743–7746

    Article  CAS  Google Scholar 

  31. Ting C-C, Wu H-Y, Vetrivel S, Saikia D, Pan Y-C, Fey GTK, Kao H-M (2010) A one-pot route to synthesize highly ordered mesoporous carbons and silicas through organic–inorganic self-assembly of triblock copolymer, sucrose and silica. Micropor Mesopor Mater 128:1–11. https://doi.org/10.1016/j.micromeso.2009.07.018

    Article  CAS  Google Scholar 

  32. Villa A, Tessonnier J-P, Majoulet O, Su DS, Schlögl R (2010) Transesterification of triglycerides using nitrogen-functionalized carbon nanotubes. Chemsuschem 3:241–245. https://doi.org/10.1002/cssc.200900181

    Article  CAS  Google Scholar 

  33. Ka Shah, Parikh JK, Maheria KC (2014) Biodiesel synthesis from acid oil over large pore sulfonic acid-modified mesostructured SBA-15: process optimization and reaction kinetics. Catal Today 237:29–37. https://doi.org/10.1016/j.cattod.2014.04.028

    Article  Google Scholar 

  34. Lu A-H, Zhao D, O’Brien P, Craighead H, Kroto H (2009) Nanocasting. P001–P266. https://doi.org/10.1039/9781847559869

  35. Lambert JB, Shurvell HF, Cooks RG (1987) Introduction to organic spectroscopy. Macmillan, New York, pp 174–177. https://doi.org/10.1007/s11746-015-2722-4

  36. Wen Z, Yu X, Tu S-T, Yan J, Dahlquist E (2010) Synthesis of biodiesel from vegetable oil with methanol catalyzed by Li-doped magnesium oxide catalysts. Appl Energy 87(3):743–748

    Article  CAS  Google Scholar 

  37. Tantirungrotechai J, Chotmongkolsap P, Pohmakotr M (2010) Synthesis, characterization, and activity in transesterification of mesoporous Mg–Al mixed-metal oxides. Micropor Mesopor Mater 128(1):41–47

    Article  CAS  Google Scholar 

  38. Silva CCC, Ribeiro NF, Souza MM, Aranda DA (2010) Biodiesel production from soybean oil and methanol using hydrotalcites as catalyst. Fuel Process Technol 91(2):205–210

    Article  CAS  Google Scholar 

  39. Samart C, Chaiya C, Reubroycharoen P (2010) Biodiesel production by methanolysis of soybean oil using calcium supported on mesoporous silica catalyst. Energy Convers Manage 51(7):1428–1431

    Article  CAS  Google Scholar 

  40. Guo F, Peng Z-G, Dai J-Y, Xiu Z-L (2010) Calcined sodium silicate as solid base catalyst for biodiesel production. Fuel Process Technol 91(3):322–328

    Article  CAS  Google Scholar 

  41. Zabeti M, Daud WMAW, Aroua MK (2010) Biodiesel production using alumina-supported calcium oxide: an optimization study. Fuel Process Technol 91(2):243–248

    Article  CAS  Google Scholar 

  42. Kim MJ, Kim M-Y, Kwon OZ, Seo G (2011) Transesterification of vegetable oils over a phosphazenium hydroxide catalyst incorporated onto silica. Fuel Process Technol 92(1):126–131

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of Vice-Presidency for Science and Technology, Presidency of the Islamic Republic of Iran is gratefully acknowledged. We acknowledge Shakhe Zeytoon Lian Inspection for its generous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Izadbakhsh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2035 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savameri, A.H., Izadbakhsh, A. & Zarenezhad, B. Study of the performance of amino-functionalized ordered mesoporous carbon in the transesterification of soybean oil. Reac Kinet Mech Cat 124, 247–264 (2018). https://doi.org/10.1007/s11144-017-1333-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1333-5

Keywords

Navigation