Skip to main content

pH mediated kinetics of assembly and disassembly of molecular and nanoscopic building blocks

Abstract

Self-assembly occurs when building blocks of the system interact with one another through interactions existing between them. Proper temporal control of these interactions can lead to formation of transient self-assembled states. pH mediated self-assembly is one of the powerful tools to stabilize and destabilize structures consisting of different sized building blocks. Here we investigate the kinetics of pH triggered reversible transformation of two building blocks using a relaxation method, reversible vesicle–micelle transformation of oleic acid molecules and dispersion–aggregation of pH sensitive gold nanoparticles. We found significant differences in the characteristic times (two orders of magnitudes) between the disassembly processes—from an ordered structure to a less ordered structure (in the case of oleic acid molecules) or to single building blocks (in the case of nanoparticles)—and the self-assembly processes (bilayer formation or aggregation of nanoparticles). It can be explained by a sophisticated interplay between repulsive (electrostatic) and attractive (van der Waals) interactions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421

    CAS  Article  Google Scholar 

  2. Whitesides GM, Boncheva M (2002) Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci USA 99:4769–4774

    CAS  Article  Google Scholar 

  3. Fendler JH (1996) Self-assembled nanostructured materials. Chem Mater 8:1616–1624

    CAS  Article  Google Scholar 

  4. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    CAS  Article  Google Scholar 

  5. Grzelczak M, Vermant J, Furst EM, Liz-Marzan LM (2010) Directed self-assembly of nanoparticles. ACS Nano 4:3591–3605

    CAS  Article  Google Scholar 

  6. Janjua M, Nudurupati S, Singh P, Aubry N (2011) Electric field-induced self-assembly of micro- and nanoparticles of various shapes at two-fluid interfaces. Electrophoresis 32:518–526

    CAS  Article  Google Scholar 

  7. Smith PA, Nordquist CD, Jackson TN, Mayer TS, Martin BR, Mbindyo J, Mallouk TE (2000) Electric-field assisted assembly and alignment of metallic nanowires. Appl Phys Lett 77:1399–1401

    CAS  Article  Google Scholar 

  8. Niu HL, Chen QW, Zhu HF, Lin YS, Zhang X (2003) Magnetic field-induced growth and self-assembly of cobalt nanocrystallites. J Mater Chem 13:1803–1805

    CAS  Article  Google Scholar 

  9. Heuser T, Steppert AK, Lopez CM, Zhu BL, Walther A (2015) Generic concept to program the time domain of self-assemblies with a self-regulation mechanism. Nano Lett 15:2213–2219

    CAS  Article  Google Scholar 

  10. Heuser T, Weyandt E, Walther A (2015) Biocatalytic feedback-driven temporal programming of self-regulating peptide hydrogels. Angew Chem Int Edit 54:13258–13262

    CAS  Article  Google Scholar 

  11. Heinen L, Walther A (2015) Celebrating soft matter’s 10th anniversary: approaches to program the time domain of self-assemblies. Soft Matter 11:7857–7866

    CAS  Article  Google Scholar 

  12. Toth-Szeles E, Horvath J, Hollo G, Szucs R, Nakanishi H, Lagzi I (2017) Chemically coded time-programmed self-assembly. Mol Syst Des Eng 2:274–282

    CAS  Article  Google Scholar 

  13. Lin J, Zhou WL, Kumbhar A, Wiemann J, Fang JY, Carpenter EE, O’Connor CJ (2001) Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly. J Solid State Chem 159:26–31

    CAS  Article  Google Scholar 

  14. van Ravensteijn BGP, Hendriksen WE, Eelkema R, van Esch JH, Kegel WK (2017) Fuel-mediated transient clustering of colloidal building blocks. J Am Chem Soc 139:9763–9766

    Article  Google Scholar 

  15. Kovacs K, McIlwaine R, Gannon K, Taylor AF, Scott SK (2005) Complex behavior in the formaldehyde—sulfite reaction. J Phys Chem A 109:283–288

    CAS  Article  Google Scholar 

  16. Kovacs K, McIlwaine RE, Scott SK, Taylor AF (2007) An organic-based pH oscillator. J Phys Chem A 111:549–551

    CAS  Article  Google Scholar 

  17. Lagzi I, Kowalczyk B, Wang DW, Grzybowski BA (2010) Nanoparticle oscillations and fronts. Angew Chem Int Edit 49:8616–8619

    CAS  Article  Google Scholar 

  18. Lagzi I, Wang DW, Kowalczyk B, Grzybowski BA (2010) Vesicle-to-micelle oscillations and spatial patterns. Langmuir 26:13770–13772

    CAS  Article  Google Scholar 

  19. Escala DM, Munuzuri AP, De Wit A, Carballido-Landeira J (2017) Temporal viscosity modulations driven by a pH sensitive polymer coupled to a pH-changing chemical reaction. Phys Chem Chem Phys 19:11914–11919

    CAS  Article  Google Scholar 

  20. Nakanishi H, Bishop KJM, Kowalczyk B, Nitzan A, Weiss EA, Tretiakov KV, Apodaca MM, Klajn R, Stoddart JF, Grzybowski BA (2009) Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles. Nature 460:371–375

    CAS  Article  Google Scholar 

  21. Fameau AL, Arnould A, Saint-Jalmes A (2014) Responsive self-assemblies based on fatty acids. Curr Opin Colloid Interface 19:471–479

    CAS  Article  Google Scholar 

  22. Morigaki K, Walde P (2007) Fatty acid vesicles. Curr Opin Colloid Interface 12:75–80

    CAS  Article  Google Scholar 

  23. Dowling MB, Lee JH, Raghavan SR (2009) pH-responsive jello: gelatin gels containing fatty acid vesicles. Langmuir 25:8519–8525

    CAS  Article  Google Scholar 

  24. Nabika H, Oikawa T, Iwasaki K, Murakoshi K, Unoura K (2012) Dynamics of gold nanoparticle assembly and disassembly induced by ph oscillations. J Phys Chem C 116:6153–6158

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research, Development and Innovation Office (K116506, NN125752 and TÉT_12_JP-1-2014-0005). H. N. acknowledges funding support from JSPS KAKENHI Grant Numbers JP15H05410 and JP16K13627, the Ogasawara Foundation, and the Kansai Research Foundation for Technology Promotion. H. N. and I. L. acknowledge support from the Project for Enhancing Research and Education in Polymer and Fiber Science at KIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István Lagzi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tóth-Szeles, E., Medveczky, Z., Holló, G. et al. pH mediated kinetics of assembly and disassembly of molecular and nanoscopic building blocks. Reac Kinet Mech Cat 123, 323–333 (2018). https://doi.org/10.1007/s11144-017-1312-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1312-x

Keywords

  • Self-assembly
  • Disassembly
  • Nanoparticles
  • Fatty acid
  • Protonation