Skip to main content
Log in

Degradation of dimethyl phthalate by peroxomonosulfate ion activated by Zn–NiO x catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Zn–Ni oxide (Zn–NiO x ) was prepared by the sol–gel method using egg white. The degradation process of the reactants was studied to remove dimethyl phthalate by using Zn–NiO x catalysts to generate powerful radicals from peroxomonosulfate. The results showed that the best experimental conditions were that Zn–NiO x concentration, the ratio between peroxomonosulfate ion and dimethyl phthalate and initial pH was 100 mg/L, 30:1 and 4.4 ± 0.1, with 79.16% dimethyl phthalate degraded. The X-ray diffraction (XRD) pattern of the catalysts showed Ni2O3, NiO, ZnO and Zn phases. X-ray photoelectron spectroscopy (XPS) showed that relative ratio of Zn, Ni2+ and surface hydroxyl groups (–OH) decreased by 2.7, 9.0 and 10.4% after the reaction, indicating that the electron transfer between multivalence as well as the existence of –OH might enhance the degradation process during the advanced oxidation system. Besides, the average grain size was in the 25–45 nm range as determined by scanning electron microscopy (SEM), which was nearly the same as that calculated using the Scherrer formula through XRD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mohammadi M, Hassani AJ, Mohamed AR, Najafpour GD (2010) Removal of rhodamine B from aqueous solution using palm shell-based activated carbon: adsorption and kinetic studies. J Chem Eng Data 55(12):5777–5785. doi:10.1021/je100730a

    Article  CAS  Google Scholar 

  2. Xu LJ, Chu W, Graham N (2013) A systematic study of the degradation of dimethyl phthalate using a high-frequency ultrasonic process. Ultrason Sonochem 20(3):892–899

    Article  CAS  Google Scholar 

  3. Liu XW, Shi JH, Bo T, Zhang H, Wu W, Chen QC, Zhan XM (2014) Occurrence of phthalic acid esters in source waters: a nationwide survey in China during the period of 2009–2012. Environ Pollut 184:262–270

    Article  CAS  Google Scholar 

  4. Tsitonaki A, Petri B, Crimi M, Mosbaek H, Siegrist RL, Bjerg PL (2010) In Situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Crit Rev Environ Sci Technol 40(1):55–91

    Article  CAS  Google Scholar 

  5. Wang Y, Sun H, Ang HM, Tade MO, Wang S (2014) Magnetic Fe3O4/carbon sphere/cobalt composites for catalytic oxidation of phenol solutions with sulfate radicals. Chem Eng J 245:1–9. doi:10.1016/j.cej.2014.02.013

    Article  CAS  Google Scholar 

  6. Nie MH, Yang Y, Zhang ZJ, Yan CX, Wang XN, Li HJ, Dong WB (2014) Degradation of chloramphenicol by thermally activated persulfate in aqueous solution. Chem Eng J 246:373–382. doi:10.1016/j.cej.2014.02.047

    Article  CAS  Google Scholar 

  7. Waldemer RH, Tratnyek PG, Johnson RL, Nurmi JT (2007) Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products. Environ Sci Technol 41(3):1010–1015. doi:10.1021/es062237m

    Article  CAS  Google Scholar 

  8. Ling SK, Wang SB, Peng YL (2010) Oxidative degradation of dyes in water using Co2+/H2O2 and Co2+/peroxymonosulfate. J Hazard Mater 178(1–3):385–389

    Article  CAS  Google Scholar 

  9. Madhavan J, Maruthamuthu P, Murugesan S, Anandan S (2008) Kinetic studies on visible light-assisted degradation of acid red 88 in presence of metal-ion coupled oxone reagent. Appl Catal B Environ 83(1–2):8–14

    Article  CAS  Google Scholar 

  10. Fukushima M, Ichikawa H, Kawasaki M, Sawada A, Morimoto K, Tatsumi K (2003) Effects of humic substances on the pattern of oxidation products of pentachlorophenol induced by a biomimetic catalytic system using tetra(p-sulfophenyl)porphineiron(III) and KHSO5. Environ Sci Technol 37(2):386–394

    Article  CAS  Google Scholar 

  11. Fernandez J, Maruthamuthu P, Kiwi J (2004) Photobleaching and mineralization of Orange II by oxone and metal-ions involving Fenton-like chemistry under visible light. J Photochem Photobiol A 161(2–3):185–192

    CAS  Google Scholar 

  12. Rodrigues-Silva C, Maniero MG, Rath S, Guimaraes JR (2013) Degradation of flumequine by the Fenton and photo-Fenton processes: evaluation of residual antimicrobial activity. ScTEn 445:337–346

    Google Scholar 

  13. Yang Q, Choi H, Al-Abed SR, Dionysiou DD (2009) Iron-cobalt mixed oxide nanocatalysts: heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications. Appl Catal B Environ 88(3–4):462–469

    Article  CAS  Google Scholar 

  14. Shi P, Dai X, Zheng H, Li D, Yao W, Hu C (2014) Synergistic catalysis of Co3O4 and graphene oxide on Co3O4/GO catalysts for degradation of Orange II in water by advanced oxidation technology based on sulfate radicals. Chem Eng J 240:264–270. doi:10.1016/j.cej.2013.11.089

    Article  CAS  Google Scholar 

  15. Zhu L, Ai Z, Ho W, Zhang L (2013) Core–shell Fe–Fe2O3 nanostructures as effective persulfate activator for degradation of methyl orange. Sep Purif Technol 108:159–165. doi:10.1016/j.seppur.2013.02.016

    Article  CAS  Google Scholar 

  16. Polshettiwar V, Luque R, Fihri A, Zhu HB, Bouhrara M, Bassett JM (2011) Magnetically recoverable nanocatalysts. Chem Rev 111(5):3036–3075

    Article  CAS  Google Scholar 

  17. Nawrocki J, Fijolek L (2013) Effect of aluminium oxide contaminants on the process of ozone decomposition in water. Appl Catal B Environ 142:533–537

    Article  Google Scholar 

  18. Zhang T, Li CJ, Ma J, Tian H, Qiang ZM (2008) Surface hydroxyl groups of synthetic alpha-FeOOH in promoting (OH)-O-center dot generation from aqueous ozone: property and activity relationship. Appl Catal B Environ 82(1–2):131–137. doi:10.1016/j.apcatb.2008.01.008

    Article  CAS  Google Scholar 

  19. Yang YX, Ma J, Qin QD, Zhai XD (2007) Degradation of nitrobenzene by nano-TiO2 catalyzed ozonation. J Mol Catal a Chem 267(1–2):41–48. doi:10.1016/j.molcata.2006.09.010

    Article  CAS  Google Scholar 

  20. Yang L, Hu C, Nie YL, Qu JH (2009) Catalytic ozonation of selected pharmaceuticals over mesoporous alumina-supported manganese oxide. Environ Sci Technol 43(7):2525–2529. doi:10.1021/es803253c

    Article  CAS  Google Scholar 

  21. Xing ST, Hu C, Qu JH, He H, Yang M (2008) Characterization and reactivity of MnOx supported on mesoporous zirconia for herbicide 2,4-D mineralization with ozone. Environ Sci Technol 42(9):3363–3368. doi:10.1021/es0718671

    Article  CAS  Google Scholar 

  22. Konova P, Stoyanova M, Naydenov A, Christoskova S, Mehandjiev D (2006) Catalytic oxidation of VOCs and CO by ozone over alumina supported cobalt oxide. Appl Catal a Gen 298:109–114. doi:10.1016/j.apcata.2005.09.027

    Article  CAS  Google Scholar 

  23. Zhao H, Dong YM, Jiang PP, Wang GL, Zhang JJ, Zhang C (2015) ZnAl2O4 as a novel high-surface-area ozonation catalyst: one-step green synthesis, catalytic performance and mechanism. Chem Eng J 260:623–630

    Article  CAS  Google Scholar 

  24. Burke MS, Enman LJ, Batchellor AS, Zou S, Boettcher SW (2015) Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles. Chem Mater 27(22):7549–7558. doi:10.1021/acs.chemmater.5b03148

    Article  CAS  Google Scholar 

  25. Pines DS, Reckhow DA (2003) Solid phase catalytic ozonation process for the destruction of a model pollutant. OzSE 25(1):25–39. doi:10.1080/713610648

    CAS  Google Scholar 

  26. Zhao L, Sun Z, Ma J (2009) Novel relationship between hydroxyl radical initiation and surface group of ceramic honeycomb supported metals for the catalytic ozonation of nitrobenzene in aqueous solution. Environ Sci Technol 43(11):4157–4163

    Article  CAS  Google Scholar 

  27. Yuan L, Shen J, Chen Z, Guan X (2016) Role of Fe/pumice composition and structure in promoting ozonation reactions. Appl Catal B Environ 180:707–714. doi:10.1016/j.apcatb.2015.07.016

    Article  CAS  Google Scholar 

  28. Trotochaud L, Ranney JK, Williams KN, Boettcher SW (2012) Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J Am Chem Soc 134(41):17253–17261. doi:10.1021/ja307507a

    Article  CAS  Google Scholar 

  29. Li W, Qiang Z, Zhang T, Cao F (2012) Kinetics and mechanism of pyruvic acid degradation by ozone in the presence of PdO/CeO2. Appl Catal B Environ 113–114:290–295. doi:10.1016/j.apcatb.2011.11.049

    Article  Google Scholar 

  30. Maddila S, Dasireddy VDBC, Jonnalagadda SB (2014) Ce–V loaded metal oxides as catalysts for dechlorination of chloronitrophenol by ozone. Appl Catal B Environ 150–151:305–314. doi:10.1016/j.apcatb.2013.12.036

    Article  Google Scholar 

  31. Ren Y, Lin L, Ma J, Yang J, Feng J, Fan Z (2015) Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M = Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water. Appl Catal B Environ 165:572–578. doi:10.1016/j.apcatb.2014.10.051

    Article  CAS  Google Scholar 

  32. Ren Y, Dong Q, Feng J, Ma J, Wen Q, Zhang M (2012) Magnetic porous ferrospinel NiFe2O4: a novel ozonation catalyst with strong catalytic property for degradation of di-n-butyl phthalate and convenient separation from water. JCIS 382(1):90–96. doi:10.1016/j.jcis.2012.05.053

    CAS  Google Scholar 

  33. Maensiri S, Masingboon C, Boonchom B, Seraphin S (2007) A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white. Scr Mater 56(9):797–800. doi:10.1016/j.scriptamat.2006.09.033

    Article  CAS  Google Scholar 

  34. Sone BT, Fuku XG, Maaza M (2016) Physical & electrochemical properties of green synthesized bunsenite NiO nanoparticles via Callistemon viminalis’ extracts. Int J Electrochem Sci 11(10):8204–8220

    Article  CAS  Google Scholar 

  35. Mironova-Ulmane N, Kuzmin A, Steins I, Grabis J, Sildos I, Pars M (2007) Raman scattering in nanosized nickel oxide NiO. J Phys Conf Ser. doi:10.1088/1742-6596/93/1/012039

    Google Scholar 

  36. Yao MM, Hu ZH, Liu YF, Liu PP, Ai ZH, Rudolf O (2015) 3D hierarchical mesoporous roselike NiO nanosheets for high-performance supercapacitor electrodes. JAllC 648:414–418. doi:10.1016/j.jallcom.2015.06.098

    CAS  Google Scholar 

  37. Thema FT, Manikandan E, Gurib-Fakim A, Maaza M (2016) Single phase Bunsenite NiO nanoparticles green synthesis by Agathosma betulina natural extract. JAllC 657:655–661

    CAS  Google Scholar 

  38. Biju V, Khadar MA (2001) Analysis of AC electrical properties of nanocrystalline nickel oxide. Mater Sci Eng a Struct 304:814–817. doi:10.1016/S0921-5093(00)01581-1

    Article  Google Scholar 

  39. Fomekong RL, Tsobnang PK, Magnin D, Hermans S, Delcorte A, Ngolui JL (2015) Coprecipitation of nickel zinc malonate: a facile and reproducible synthesis route for Ni1−x Zn x O nanoparticles and Ni1−x Zn x O/ZnO nanocomposites via pyrolysis. J Solid State Chem 230:381–389. doi:10.1016/j.jssc.2015.07.040

    Article  Google Scholar 

  40. Bhatu SS, Lakhani VK, Tanna AR, Vasoya NH, Buch JU, Sharma PU, Trivedi UN, Joshi HH, Modi KB (2007) Effect of nickel substitution on structural, infrared and elastic properties of lithium ferrite. Indian J Pure Appl Phys 45(7):596–608

    CAS  Google Scholar 

  41. Priyadharsini P, Pradeep A, Chandrasekaran G (2009) Novel combustion route of synthesis and characterization of nanocrystalline mixed ferrites of Ni–Zn. JMMM 321(12):1898–1903

    Article  CAS  Google Scholar 

  42. Mazen SA, Abu-Elsaad NI (2012) Structural and some magnetic properties of manganese-substituted lithium ferrites. JMMM 324(20):3366–3373. doi:10.1016/j.jmmm.2012.05.056

    Article  CAS  Google Scholar 

  43. Aljawfi RN, Mollah S (2011) Properties of Co/Ni codoped ZnO based nanocrystalline DMS. JMMM 323(23):3126–3132. doi:10.1016/j.jmmm.2011.06.069

    Article  CAS  Google Scholar 

  44. Li HX, Wang JY, Liu H, Yang CH, Xu HY, Li X, Cui HM (2004) Sol-gel preparation of transparent zinc oxide films with highly preferential crystal orientation. Vacuum 77(1):57–62. doi:10.1016/j.vacuum.2004.08.003

    Article  CAS  Google Scholar 

  45. Anand GT, Kennedy LJ, Vijaya JJ, Kaviyarasan K, Sukumar M (2015) Structural, optical and magnetic characterization of Zn1−x Ni x Al2O4 (0 ≤ x ≤ 5) spinel nanostructures synthesized by microwave combustion technique. Ceram Int 41(1):603–615. doi:10.1016/j.ceramint.2014.08.109

    Article  CAS  Google Scholar 

  46. Arshad M, Azam A, Ahmed AS, Mollah S, Naqvi AH (2011) Effect of Co substitution on the structural and optical properties of ZnO nanoparticles synthesized by sol–gel route. JAllC 509(33):8378–8381

    CAS  Google Scholar 

  47. Mustafa L, Anjum S, Waseem S, Javed S, Ramay SM, Atiq S (2016) Effect of Co and Ni codoping on the structural, magnetic, electrical and optical properties of ZnO. MaRBu 84:32–38

    CAS  Google Scholar 

  48. Marzouk SY, Seoudi R, Said DA, Mabrouk MS (2013) Linear and non-linear optics and FTIR characteristics of borosilicate glasses doped with gadolinium ions. OptMa 35(12):2077–2084. doi:10.1016/j.optmat.2013.05.023

    CAS  Google Scholar 

  49. Awad NK, Ashour EA, Fouda AS, Allam NK (2014) Effect of alloying elements on the electrochemical behavior of Cu–Ni–Zn ternary system in sulfide-polluted saltwater. ApSS 307:621–630

    CAS  Google Scholar 

  50. Xiang X, Zu XT, Zhu S, Zhang CF, Wang LM (2006) Optical absorption of metallic Zn nanoparticles in Zn ion implanted sapphire. Nucl Instrum Methods B 250:192–195. doi:10.1016/j.nimb.2006.04.107

    Article  CAS  Google Scholar 

  51. Wang Z-Y, Chou H-C, Wu JCS, Tsai DP, Mul G (2010) CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy. Appl Catal a Gen 380(1–2):172–177. doi:10.1016/j.apcata.2010.03.059

    Article  CAS  Google Scholar 

  52. Machocki A, Ioannides T, Stasinska B, Gac W, Avgouropoulos G, Delimaris D, Grzegorczyk W, Pasieczna S (2004) Manganese–lanthanum oxides modified with silver for the catalytic combustion of methane. J Catal 227(2):282–296. doi:10.1016/j.jcat.2004.07.022

    Article  CAS  Google Scholar 

  53. Dai Y, Wang X, Dai Q, Li D (2012) Effect of Ce and La on the structure and activity of MnOx catalyst in catalytic combustion of chlorobenzene. Appl Catal B Environ 111–112:141–149. doi:10.1016/j.apcatb.2011.09.028

    Article  Google Scholar 

  54. Stevens MB, Trang CDM, Enman LJ, Deng J, Boettcher SW (2017) Reactive Fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity. J Am Chem Soc 139(33):11361–11364. doi:10.1021/jacs.7b07117

    Article  CAS  Google Scholar 

  55. Burke MS, Zou S, Enman LJ, Kellon JE, Gabor CA, Pledger E, Boettcher SW (2015) Revised oxygen evolution reaction activity trends for first-row transition-metal (oxy)hydroxides in alkaline media. J Phys Chem Lett 6(18):3737–3742. doi:10.1021/acs.jpclett.5b01650

    Article  CAS  Google Scholar 

  56. Gabor Lente JK, Baranyai Z, Kun A, Kek I, Bajusz D, Takacs M, Veres L, Fabian I (2009) One-versus two-electron oxidation with peroxomonosulfate ion: reactions with iron(II), vanadium(IV), halide ions, and photoreaction with cerium(III). InCh 48(4):1763–1773

    Google Scholar 

  57. Anipsitakis GP, Dionysiou DD (2003) Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ Sci Technol 37(20):4790–4797

    Article  CAS  Google Scholar 

  58. Yang SY, Wang P, Yang X, Shan L, Zhang WY, Shao XT, Niu R (2010) Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide. J Hazard Mater 179(1–3):552–558

    Article  CAS  Google Scholar 

  59. Kim J, Edwards JO (1995) A study of cobalt catalysis and copper modification in the coupled decompositions of hydrogen-peroxide and peroxomonosulfate ion. Inorg Chim Acta 235(1–2):9–13

    Article  CAS  Google Scholar 

  60. Sui M, Xing S, Sheng L, Huang S, Guo H (2012) Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst. J Hazard Mater 227:227–236. doi:10.1016/j.jhazmat.2012.05.039

    Article  Google Scholar 

  61. Nawrocki J, Fijołek L (2013) Effect of aluminium oxide contaminants on the process of ozone decomposition in water. Appl Catal B Environ 142–143:533–537. doi:10.1016/j.apcatb.2013.05.069

    Article  Google Scholar 

  62. Lv A, Hu C, Nie Y, Qu J (2010) Catalytic ozonation of toxic pollutants over magnetic cobalt and manganese co-doped γ-Fe2O3. Appl Catal B Environ 100(1–2):62–67. doi:10.1016/j.apcatb.2010.07.011

    Article  CAS  Google Scholar 

  63. Oh SY, Kim HW, Park JM, Park HS, Yoon C (2009) Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron. J Hazard Mater 168(1):346–351

    Article  CAS  Google Scholar 

  64. Chen QK, Ji FY, Liu TY, Yan P, Guan W, Xu X (2013) Synergistic effect of bifunctional Co–TiO2 catalyst on degradation of Rhodamine B: Fenton-photo hybrid process. Chem Eng J 229:57–65. doi:10.1016/j.cej.2013.04.024

    Article  CAS  Google Scholar 

  65. Anipsitakis GP, Dionysiou DD (2004) Radical generation by the interaction of transition metals with common oxidants. Environ Sci Technol 38(13):3705–3712

    Article  CAS  Google Scholar 

  66. Anipsitakis GP, Dionysiou DD (2004) Transition metal/UV-based advanced oxidation technologies for water decontamination. Appl Catal B Environ 54(3):155–163. doi:10.1016/j.apcatb.2004.05.025

    Article  CAS  Google Scholar 

  67. Beller G, Szabo M, Lente G, Fabian I (2016) Formation of 1,10-phenanthroline-N,N′-dioxide under mild conditions: the kinetics and mechanism of the oxidation of 1,10-phenanthroline by peroxomonosulfate ion (oxone). J Org Chem 81(13):5345–5353. doi:10.1021/acs.joc.6b00641

    Article  CAS  Google Scholar 

  68. Kalmar J, Lente G, Fabian I (2013) Detailed kinetics and mechanism of the oxidation of thiocyanate ion (SCN) by peroxomonosulfate ion (HSO5(−)). Formation and subsequent oxidation of hypothiocyanite ion (OSCN). InCh 52(4):2150–2156

    CAS  Google Scholar 

  69. Jia YF, Xiao B, Thomas KM (2002) Adsorption of metal ions on nitrogen surface functional groups in activated carbons. Langmuir 18(2):470–478

    Article  CAS  Google Scholar 

  70. Zhao H, Dong Y, Wang G, Jiang P, Zhang J, Wu L, Li K (2013) Novel magnetically separable nanomaterials for heterogeneous catalytic ozonation of phenol pollutant: NiFe2O4 and their performances. Chem Eng J 219:295–302. doi:10.1016/j.cej.2013.01.019

    Article  CAS  Google Scholar 

  71. Huang R, Yan H, Li L, Deng D, Shu Y, Zhang Q (2011) Catalytic activity of Fe/SBA-15 for ozonation of dimethyl phthalate in aqueous solution. Appl Catal B Environ 106(1–2):264–271. doi:10.1016/j.apcatb.2011.05.041

    CAS  Google Scholar 

  72. Chen L, Peng XZ, Liu JH, Li JJ, Wu F (2012) Decolorization of Orange II in aqueous solution by an Fe(II)/sulfite system: replacement of persulfate. Ind Eng Chem Res 51(42):13632–13638

    Article  CAS  Google Scholar 

  73. Ji F, Li CL, Deng L (2011) Performance of CuO/oxone system: heterogeneous catalytic oxidation of phenol at ambient conditions. Chem Eng J 178:239–243

    Article  CAS  Google Scholar 

  74. Oh WD, Dong ZL, Lim TT (2016) Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects. Appl Catal B Environ 194:169–201

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Appreciation and acknowledgment are given to the National Natural Science Foundation of China (No. 51508353), the National Natural Science Foundation of China (No. 51008052) and Scientific Research Fund of Harbin Science and Technology Bureau (2014RFQXJ187).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Zhang, J., Zhang, Y. et al. Degradation of dimethyl phthalate by peroxomonosulfate ion activated by Zn–NiO x catalyst. Reac Kinet Mech Cat 122, 1175–1192 (2017). https://doi.org/10.1007/s11144-017-1280-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1280-1

Keywords

Navigation