Skip to main content
Log in

Kinetics and thermodynamics of the reaction of iminodiacetate copper(II) complexes with 1,10-phenanthroline and 2,2′-bipyridine in aqueous, anionic, cationic and nonionic surfactants solutions

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The kinetics and thermodynamics have been studied for the reactions of the copper(II) complexes with iminodiacetate (ida), 2,2′-bipyridine (bipy) and 1,10-phenanthroline (phen) as ligands. The kinetics of substitution reactions of two aqua ligands for bipy and phen in the [Cu(ida)(H2O)2] coordination compound has been studied in water and three type of aqueous solutions of the following surfactants: anionic sodium dodecyl sulfate (SDS), cationic hexadecyl trimethyl-ammonium bromide (CTAB) and nonionic t-octylphenoxypolyetoxyethanol (Triton X-100). The progress of the substitution reactions in the studied solutions was monitored spectrophotometrically using the stopped-flow method. The studies have allowed the determination of the effect of the type of surfactant solutions on the rate of the substitution reaction. Moreover, the order of studied reactions has been determined. The research performed has also allowed us to propose the reaction mechanism of the [Cu(ida)(H2O)2] binary complex with chelate ligands (bipy or phen). In addition, the thermodynamic stability of complexes under study in aqueous solutions has been examined using the potentiometric titration method. Moreover, the potential scavenging activity of the copper(II) complexes has been investigated towards the superoxide radical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Roman-Alpiste MJ, Martin-Ramos JD, Castineiras-Campos A, Bugella-Altamirano E, Sicilia-Zafra AG, Gonzalez-Perez JM, Niclos-Gutierrez J (1999) Polyhedron 18:3341–3351

    Article  CAS  Google Scholar 

  2. Ren YP, Long LS, Mao BW, Yuan YZ, Huang RB, Zheng LS (2003) Angew Chem Int Ed 115:550–553

    Article  Google Scholar 

  3. Hong-Bin X, Li-Kai Y, Zhong-Min S, Shu-Mei Y, Heng-Już Z, Kui-Zhan S, Ya-Hui Z (2004) Transit Met Chem 29:471–476

    Article  Google Scholar 

  4. Selvakumar B, Rajendiran V, Maheswari PU, Stoeckli-Evans H, Palaniavar M (2006) J Inorg Biochem 100:316–330

    Article  CAS  Google Scholar 

  5. Pavlishchuk AV, Kolotilov SV, Zeller M, Thompson LK, Addison AW (2014) Inorg Chem 53:1320–1330

    Article  CAS  Google Scholar 

  6. Pranczk J, Jacewicz D, Wyrzykowski D, Tesmar A, Chmurzyński L (2015) J Chem Sci 127:1845–1852

    Article  CAS  Google Scholar 

  7. Holyer RH, Hubbard CD, Kettle SDA, Wilkins RG (1956) Inorg Chem 4:929–935

    Article  Google Scholar 

  8. Bunton CA (2006) Adv Colloid Interface Sci 123–136:333–343

    Article  Google Scholar 

  9. Dwars T, Paetzold E, Oehme G (2005) Angew Chem Int Ed 44:7174–7199

    Article  CAS  Google Scholar 

  10. Ruiz CC (1995) Colloid Polym Sci 273:1033–1040

    Article  CAS  Google Scholar 

  11. Singh A, Van Hamme JD, Ward OP (2007) Biotechnol Adv 25:99–121

    Article  CAS  Google Scholar 

  12. Samiey B, Toosi AR (2009) Bull Korean Chem Soc 30:2051–2056

    Article  CAS  Google Scholar 

  13. Hodges HL, De Araujo MA (1982) Inorg Chem 21:3236–3239

    Article  CAS  Google Scholar 

  14. Bellam R, Anipindi NR (2014) Transit Met Chem 39:311–326

    Article  CAS  Google Scholar 

  15. Wang JS, Matyjaszewski K (1995) Macromolecules 28:7901–7910

    Article  CAS  Google Scholar 

  16. Fridovich I (1995) Annu Rev Biochem 64:97–112

    Article  CAS  Google Scholar 

  17. Harrison PG, Ball IK, Azelee W, Daniell W, Goldfarb D (2000) Chem Mater 12:3715–3725

    Article  CAS  Google Scholar 

  18. Siddiqi ZA, Sharma PK, Shahid M, Khalid M, Siddique A, Kumar S (2012) Eur J Med Chem 57:102–111

    Article  CAS  Google Scholar 

  19. Siddiqi ZA, Sharma PK, Shahid M, Khalid M, Kumar S (2011) J Mol Struct 994:295–301

    Article  CAS  Google Scholar 

  20. Singh V, Tyagi R (2015) J Taibah Univ Sci 9:477–489

    Article  Google Scholar 

  21. Brariz I, Barriada J, Vilarino T, de Vicente MS (2004) Monatsh Chem 135:1475–1488

    Article  Google Scholar 

  22. Chmurzyński L (1996) Anal Chim Acta 326:267–274

    Article  Google Scholar 

  23. Chmurzyński L, Nesterowicz M, Wawrzyniak G, Kaczmarczyk E, Warnke Z (1996) Aust J Chem 49:931–942

    Article  Google Scholar 

  24. Gans P, Sabatini A, Vacca A (1996) Talanta 43:1739–1753

    Article  CAS  Google Scholar 

  25. Alderighi L, Gans P, Ienco A, Peters D, Sabatini A, Vacca A (1999) Coord Chem Rev 184:311–318

    Article  CAS  Google Scholar 

  26. Pranczk J, Jacewicz D, Wyrzykowski D, Chmurzynski L (2014) Curr Pharm Anal 10:293–304

    Article  CAS  Google Scholar 

  27. Audri RL, Allen AO, Bielski BH (1981) FEBS Lett 135:265–267

    Article  Google Scholar 

  28. Pranczk J, Jacewicz D, Wyrzykowski D, Wojtczak A, Tesmar A, Chmurzyński L (2015) Eur J Inorg Chem 20:3343–3349

    Article  Google Scholar 

  29. Wyrzykowski D, Inkielewicz-Stępniak I, Czupryniak J, Jacewicz D, Ossowski T, Woźniak M, Chmurzyński L (2013) Z Anorg Allg Chem 639:1795–1799

    Article  CAS  Google Scholar 

  30. Pranczk J, Wyrzykowski D, Jacewicz D, Sikorski A, Tesmar A, Chmurzyński L (2015) Polyhedron 100:74–81

    Article  CAS  Google Scholar 

  31. Rosi M, Sgamellotti A, Tarantelli F, Bertini I, Luchinat C (1986) Inorg Chem 25:1005–1008

    Article  CAS  Google Scholar 

  32. Wyrzykowski D, Pranczk J, Jacewicz D, Tesmar A, Pilarski B, Chmurzyński L (2014) Cent Eur J Chem 12:107–114

    CAS  Google Scholar 

  33. Sillen LG, Martel AE (1966) Stability constants of metal-ion complexes. The Chemical Society, London

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Centre, Poland under Grant Number 2015/19/N/ST5/00276.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmara Jacewicz.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drzeżdżon, J., Piotrowska, A., Wyrzykowski, D. et al. Kinetics and thermodynamics of the reaction of iminodiacetate copper(II) complexes with 1,10-phenanthroline and 2,2′-bipyridine in aqueous, anionic, cationic and nonionic surfactants solutions. Reac Kinet Mech Cat 122, 729–740 (2017). https://doi.org/10.1007/s11144-017-1269-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1269-9

Keywords

Navigation