Skip to main content
Log in

Effective coupling of phenol adsorption and photodegradation at the surface of micro-and mesoporous TiO2-activated carbon materials

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Novel titania supported activated carbon catalysts were prepared by a straightforward titania coating route of a microporous activated carbon (AC) derived from shea nut shells, and investigated in phenol photocatalytic degradation. The proposed coating method enables a fixation of the preformed titania anatase nanoparticles (TiO2 NPs) in the external porosity thus allowing their accessibility towards UV irradiation, without causing any reduction of the AC specific area. Interestingly, the coating treatment reshapes the porous texture of the as-prepared TiO2–AC composite materials resulting in an improvement of the adsorption capacity and the formation of an additional mesoporosity on the TiO2-AC surface. Photocatalytic experiments carried out in a batch reactor led to 97% elimination rate of phenol in an aqueous solution with the AC catalysts containing TiO2 NPs in the range from 11 to 34 wt%. The photodegradation performance of the TiO2–AC catalysts was maintained over several successive cycles, without the need of any regeneration treatment. Considering both the textural and microstructural features of the composite materials and their associated phenol removal kinetics, in this paper, we provide new insights into phenol photodegradation pathway involving an effective coupling of adsorption and photodegradation functionalities, resulting in a photo-assisted regeneration mechanism of the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35:402–417. doi:10.1016/j.envint.2008.07.009

    Article  CAS  Google Scholar 

  2. Muthukumar M, Sargunamani D, Selvakumar N, Venkata Rao J (2004) Optimisation of ozone treatment for colour and COD removal of acid dye effluent using central composite design experiment. Dyes Pigments 63:127–134. doi:10.1016/j.dyepig.2004.02.003

    Article  CAS  Google Scholar 

  3. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96. doi:10.1021/cr00033a004

    Article  CAS  Google Scholar 

  4. Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535. doi:10.1039/C3CS60378D

    Article  CAS  Google Scholar 

  5. Plantard G, Janin T, Goetz V, Brosillon S (2012) Solar photocatalysis treatment of phytosanitary refuses: efficiency of industrial photocatalysts. Appl Catal B Environ 115–116:38–44. doi:10.1016/j.apcatb.2011.11.034

    Article  Google Scholar 

  6. Daghrir R, Drogui P, Robert D (2013) Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res 52:3581–3599. doi:10.1021/ie303468t

    Article  CAS  Google Scholar 

  7. Fresno F, Portela R, Suárez S, Coronado JM (2014) Photocatalytic materials: recent achievements and near future trends. J Mater Chem A 2:2863–2884. doi:10.1039/C3TA13793G

    Article  CAS  Google Scholar 

  8. Fuentes KM, Betancourt P, Marrero S, García S (2017) Photocatalytic degradation of phenol using doped titania supported on photonic SiO2 spheres. React Kinet Mech Catal 120:403–415. doi:10.1007/s11144-016-1097-3

    Article  CAS  Google Scholar 

  9. Khan H (2017) Sol–gel synthesis of TiO2 from TiOSO4: characterization and UV photocatalytic activity for the degradation of 4-chlorophenol. React Kinet Mech Catal 121:811–832. doi:10.1007/s11144-017-1195-x

    Article  CAS  Google Scholar 

  10. Leary R, Westwood A (2011) Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 49:741–772. doi:10.1016/j.carbon.2010.10.010

    Article  CAS  Google Scholar 

  11. Matos J, Laine J, Herrmann J-M (1998) Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Appl Catal B Environ 18:281–291. doi:10.1016/S0926-3373(98)00051-4

    Article  CAS  Google Scholar 

  12. Liu SX, Chen XY, Chen X (2007) A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method. J Hazard Mater 143:257–263. doi:10.1016/j.jhazmat.2006.09.026

    Article  CAS  Google Scholar 

  13. Wang X, Hu Z, Chen Y et al (2009) A novel approach towards high-performance composite photocatalyst of TiO2 deposited on activated carbon. Appl Surf Sci 255:3953–3958. doi:10.1016/j.apsusc.2008.10.083

    Article  CAS  Google Scholar 

  14. Liu C, Li Y, Xu P et al (2015) Controlled synthesis of ordered mesoporous TiO2-supported on activated carbon and pore-pore synergistic photocatalytic performance. Mater Chem Phys 149–150:69–76. doi:10.1016/j.matchemphys.2014.09.034

    Article  Google Scholar 

  15. Asenjo NG, Santamaría R, Blanco C et al (2013) Correct use of the Langmuir-Hinshelwood equation for proving the absence of a synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Carbon 55:62–69. doi:10.1016/j.carbon.2012.12.010

    Article  CAS  Google Scholar 

  16. Cordero T, Duchamp C, Chovelon J-M et al (2007) Influence of L-type activated carbons on photocatalytic activity of TiO2 in 4-chlorophenol photodegradation. J Photochem Photobiol Chem 191:122–131. doi:10.1016/j.jphotochem.2007.04.012

    Article  CAS  Google Scholar 

  17. Lim T-T, Yap P-S, Srinivasan M, Fane AG (2011) TiO2/AC composites for synergistic adsorption-photocatalysis processes: present challenges and further developments for water treatment and reclamation. Crit Rev Environ Sci Technol 41:1173–1230. doi:10.1080/10643380903488664

    Article  CAS  Google Scholar 

  18. Sengele A, Robert D, Keller N et al (2016) Ta-doped TiO2 as photocatalyst for UV-A activated elimination of chemical warfare agent simulant. J Catal 334:129–141. doi:10.1016/j.jcat.2015.11.004

    Article  CAS  Google Scholar 

  19. Méndez-Medrano MG, Kowalska E, Lehoux A et al (2016) Surface modification of TiO2 with Ag nanoparticles and CuO nanoclusters for application in photocatalysis. J Phys Chem C 120:5143–5154. doi:10.1021/acs.jpcc.5b10703

    Article  Google Scholar 

  20. Baransi K, Dubowski Y, Sabbah I (2012) Synergetic effect between photocatalytic degradation and adsorption processes on the removal of phenolic compounds from olive mill wastewater. Water Res 46:789–798. doi:10.1016/j.watres.2011.11.049

    Article  CAS  Google Scholar 

  21. Liu W, Ni J, Yin X (2014) Synergy of photocatalysis and adsorption for simultaneous removal of Cr(VI) and Cr(III) with TiO2 and titanate nanotubes. Water Res 53:12–25. doi:10.1016/j.watres.2013.12.043

    Article  CAS  Google Scholar 

  22. Matos J, Montaña R, Rivero E (2014) Influence of activated carbon upon the photocatalytic degradation of methylene blue under UV–Vis irradiation. Environ Sci Pollut Res 22:784–791. doi:10.1007/s11356-014-2832-9

    Article  Google Scholar 

  23. Velasco LF, Parra JB, Ania CO (2010) Role of activated carbon features on the photocatalytic degradation of phenol. Appl Surf Sci 256:5254–5258. doi:10.1016/j.apsusc.2009.12.113

    Article  CAS  Google Scholar 

  24. Chekem CT, Richardson Y, Plantard G et al (2016) From biomass residues to titania coated carbonaceous photocatalysts: a comparative analysis of different preparation routes for water treatment application. Waste Biomass Valorization. doi:10.1007/s12649-016-9789-5

    Google Scholar 

  25. Ding Z, Hu X, Yue PL et al (2001) Synthesis of anatase TiO2 supported on porous solids by chemical vapor deposition. Catal Today 68:173–182. doi:10.1016/S0920-5861(01)00298-X

    Article  Google Scholar 

  26. El-Sheikh AH, Newman AP, Al-Daffaee H et al (2004) Deposition of anatase on the surface of activated carbon. Surf Coat Technol 187:284–292. doi:10.1016/j.surfcoat.2004.03.012

    Article  CAS  Google Scholar 

  27. Lettmann C, Hildenbrand K, Kisch H et al (2001) Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Appl Catal B Environ 32:215–227. doi:10.1016/S0926-3373(01)00141-2

    Article  CAS  Google Scholar 

  28. Li Y, Zhang S, Yu Q, Yin W (2007) The effects of activated carbon supports on the structure and properties of TiO2 nanoparticles prepared by a sol–gel method. Appl Surf Sci 253:9254–9258. doi:10.1016/j.apsusc.2007.05.057

    Article  CAS  Google Scholar 

  29. Yuan R, Guan R, Zheng J (2005) Effect of the pore size of TiO2-loaded activated carbon fiber on its photocatalytic activity. Scr Mater 52:1329–1334. doi:10.1016/j.scriptamat.2005.02.028

    Article  CAS  Google Scholar 

  30. Liang Y, Wang H, Casalongue HS et al (2010) TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res 3:701–705. doi:10.1007/s12274-010-0033-5

    Article  CAS  Google Scholar 

  31. Subramani AK, Byrappa K, Ananda S et al (2007) Photocatalytic degradation of indigo carmine dye using TiO2 impregnated activated carbon. Bull Mater Sci 30:37–41. doi:10.1007/s12034-007-0007-8

    Article  CAS  Google Scholar 

  32. Velasco LF, Tsyntsarski B, Petrova B et al (2010) Carbon foams as catalyst supports for phenol photodegradation. J Hazard Mater 184:843–848. doi:10.1016/j.jhazmat.2010.08.118

    Article  CAS  Google Scholar 

  33. Kadirova ZC, Hojamberdiev M, Katsumata K et al (2013) Photodegradation of gaseous acetaldehyde and methylene blue in aqueous solution with titanium dioxide-loaded activated carbon fiber polymer materials and aquatic plant ecotoxicity tests. Environ Sci Pollut Res. doi:10.1007/s11356-013-2405-3

    Google Scholar 

  34. Gar Alalm M, Tawfik A, Ookawara S (2016) Enhancement of photocatalytic activity of TiO2 by immobilization on activated carbon for degradation of pharmaceuticals. J Environ Chem Eng 4:1929–1937. doi:10.1016/j.jece.2016.03.023

    Article  CAS  Google Scholar 

  35. Mohd Din AT, Hameed BH, Ahmad AL (2009) Batch adsorption of phenol onto physiochemical-activated coconut shell. J Hazard Mater 161:1522–1529. doi:10.1016/j.jhazmat.2008.05.009

    Article  Google Scholar 

  36. Kahru A, Pollumaa L, Reiman R et al (2000) The toxicity and biodegradability of eight main phenolic compounds characteristic to the oil-shale industry wastewaters: a test battery approach—Kahru—2000—environmental toxicology—Wiley online library. Environ Toxicol 15:431–442

    Article  CAS  Google Scholar 

  37. Salame II, Bandosz TJ (2003) Role of surface chemistry in adsorption of phenol on activated carbons. J Colloid Interface Sci 264:307–312. doi:10.1016/S0021-9797(03)00420-X

    Article  CAS  Google Scholar 

  38. Noumi ES, Dabat M-H, Blin J (2013) Energy efficiency and waste reuse: a solution for sustainability in poor West African countries? Case study of the shea butter supply chain in Burkina Faso. J Renew Sustain Energy 5:53134. doi:10.1063/1.4824432

    Article  Google Scholar 

  39. Itodo AU, Itodo HU, Gafar MK (2010) Evaluation of Dyestuff removal by shea nut (Vitellaria paradoxa) shells. J Appl Sci Environ Manag. doi:10.4314/jasem.v14i4.63309

    Google Scholar 

  40. Réti B, Mogyorósi K, Dombi A, Hernádi K (2014) Substrate dependent photocatalytic performance of TiO2/MWCNT photocatalysts. Appl Catal Gen 469:153–158. doi:10.1016/j.apcata.2013.10.001

    Article  Google Scholar 

  41. Tryba B, Morawski AW, Inagaki M, Toyoda M (2006) Effect of the carbon coating in Fe-C-TiO2 photocatalyst on phenol decomposition under UV irradiation via photo-Fenton process. Chemosphere 64:1225–1232. doi:10.1016/j.chemosphere.2005.11.035

    Article  CAS  Google Scholar 

  42. Cheng G, Stadler FJ (2015) Achieving phase transformation and structure control of crystalline anatase TiO2@C hybrids from titanium glycolate precursor and glucose molecules. J Colloid Interface Sci 438:169–178. doi:10.1016/j.jcis.2014.09.084

    Article  CAS  Google Scholar 

  43. Zeng M, Li Y, Ma M et al (2013) Photocatalytic activity and kinetics for acid yellow degradation over surface composites of TiO2-coated activated carbon under different photocatalytic conditions. Trans Nonferrous Met Soc China 23:1019–1027. doi:10.1016/S1003-6326(13)62561-3

    Article  CAS  Google Scholar 

  44. Noh JS, Schwarz JA (1989) Estimation of the point of zero charge of simple oxides by mass titration. J Colloid Interface Sci 130:157–164. doi:10.1016/0021-9797(89)90086-6

    Article  CAS  Google Scholar 

  45. Liu Y, Yang S, Hong J, Sun C (2007) Low-temperature preparation and microwave photocatalytic activity study of TiO2-mounted activated carbon. J Hazard Mater 142:208–215. doi:10.1016/j.jhazmat.2006.08.020

    Article  CAS  Google Scholar 

  46. El-Sheikh AH, Al-Degs YS, Newman AP, Lynch DE (2007) Oxidized activated carbon as support for titanium dioxide in UV-assisted degradation of 3-chlorophenol. Sep Purif Technol 54:117–123. doi:10.1016/j.seppur.2006.08.020

    Article  CAS  Google Scholar 

  47. Carpio E, Zúñiga P, Ponce S et al (2005) Photocatalytic degradation of phenol using TiO2 nanocrystals supported on activated carbon. J Mol Catal Chem 228:293–298. doi:10.1016/j.molcata.2004.09.066

    Article  CAS  Google Scholar 

  48. Lente G (2015) Deterministic kinetics in chemistry and systems biology the dynamics of complex reaction networks. Springer, New York

    Google Scholar 

  49. Ahmaruzzaman M, Sharma DK (2005) Adsorption of phenols from wastewater. J Colloid Interface Sci 287:14–24. doi:10.1016/j.jcis.2005.01.075

    Article  CAS  Google Scholar 

  50. Gueye M, Richardson Y, Kafack FT, Blin J (2014) High efficiency activated carbons from African biomass residues for the removal of chromium(VI) from wastewater. J Environ Chem Eng 2:273–281. doi:10.1016/j.jece.2013.12.014

    Article  CAS  Google Scholar 

  51. Molina-Sabio M, Rodríguez-Reinoso F (2004) Role of chemical activation in the development of carbon porosity. Colloids Surf Physicochem Eng Asp 241:15–25. doi:10.1016/j.colsurfa.2004.04.007

    Article  CAS  Google Scholar 

  52. Zhang X, Zhou M, Lei L (2005) Preparation of photocatalytic TiO2 coatings of nanosized particles on activated carbon by AP-MOCVD. Carbon 43:1700–1708. doi:10.1016/j.carbon.2005.02.013

    Article  CAS  Google Scholar 

  53. Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874. doi:10.1007/s10853-010-5113-0

    Article  CAS  Google Scholar 

  54. Wetchakun N, Incessungvorn B, Wetchakun K, Phanichphant S (2012) Influence of calcination temperature on anatase to rutile phase transformation in TiO2 nanoparticles synthesized by the modified sol–gel method. Mater Lett 82:195–198. doi:10.1016/j.matlet.2012.05.092

    Article  CAS  Google Scholar 

  55. Favaro M, Agnoli S, Di Valentin C et al (2014) TiO2/graphene nanocomposites from the direct reduction of graphene oxide by metal evaporation. Carbon 68:319–329. doi:10.1016/j.carbon.2013.11.008

    Article  CAS  Google Scholar 

  56. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177. doi:10.1016/j.progsolidstchem.2004.08.001

    Article  CAS  Google Scholar 

  57. Zhang Z, Wang C-C, Zakaria R, Ying JY (1998) Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B 102:10871–10878. doi:10.1021/jp982948+

    Article  CAS  Google Scholar 

  58. Py X, Guillot A, Cagnon B (2003) Activated carbon porosity tailoring by cyclic sorption/decomposition of molecular oxygen. Carbon 41:1533–1543. doi:10.1016/S0008-6223(03)00092-7

    Article  CAS  Google Scholar 

  59. Araña J, Doña-Rodríguez JM, Tello Rendón E et al (2003) TiO2 activation by using activated carbon as a support: Part II. Photoreactivity and FTIR study. Appl Catal B Environ 44:153–160. doi:10.1016/S0926-3373(03)00075-4

    Article  Google Scholar 

  60. Roostaei N, Tezel FH (2004) Removal of phenol from aqueous solutions by adsorption. J Environ Manag 70:157–164. doi:10.1016/j.jenvman.2003.11.004

    Article  Google Scholar 

  61. Tancredi N, Medero N, Möller F et al (2004) Phenol adsorption onto powdered and granular activated carbon, prepared from Eucalyptus wood. J Colloid Interface Sci 279:357–363. doi:10.1016/j.jcis.2004.06.067

    Article  CAS  Google Scholar 

  62. Gianluca Li Puma AB (2008) Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: a review paper. J Hazard Mater 157:209–219. doi:10.1016/j.jhazmat.2008.01.040

    Article  Google Scholar 

  63. Yuan R, Guan R, Liu P, Zheng J (2007) Photocatalytic treatment of wastewater from paper mill by TiO2 loaded on activated carbon fibers. Colloids Surf Physicochem Eng Asp 293:80–86. doi:10.1016/j.colsurfa.2006.07.010

    Article  CAS  Google Scholar 

  64. Li Y, Li X, Li J, Yin J (2006) Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Res 40:1119–1126. doi:10.1016/j.watres.2005.12.042

    Article  CAS  Google Scholar 

  65. Sobczyński A, Duczmal Ł, Zmudziński W (2004) Phenol destruction by photocatalysis on TiO2: an attempt to solve the reaction mechanism. J Mol Catal Chem 213:225–230. doi:10.1016/j.molcata.2003.12.006

    Article  Google Scholar 

  66. Quintanilla A, Casas JA, Mohedano AF, Rodríguez JJ (2006) Reaction pathway of the catalytic wet air oxidation of phenol with a Fe/activated carbon catalyst. Appl Catal B Environ 67:206–216. doi:10.1016/j.apcatb.2006.05.003

    Article  CAS  Google Scholar 

  67. Gamage McEvoy J, Cui W, Zhang Z (2014) Synthesis and characterization of Ag/AgCl–activated carbon composites for enhanced visible light photocatalysis. Appl Catal B Environ 144:702–712. doi:10.1016/j.apcatb.2013.07.062

    Article  CAS  Google Scholar 

  68. Matos J, Laine J, Herrmann J-M (2001) Effect of the type of activated carbons on the photocatalytic degradation of aqueous organic pollutants by UV-irradiated Titania. J Catal 200:10–20. doi:10.1006/jcat.2001.3191

    Article  CAS  Google Scholar 

  69. Goetz V, Cambon JP, Sacco D, Plantard G (2009) Modeling aqueous heterogeneous photocatalytic degradation of organic pollutants with immobilized TiO2. Chem Eng Process Process Intensif 48:532–537. doi:10.1016/j.cep.2008.06.013

    Article  CAS  Google Scholar 

  70. el Zekri M, Colbeau-Justin C (2013) A mathematical model to describe the photocatalytic reality: what is the probability that a photon does its job? Chem Eng J 225:547–557. doi:10.1016/j.cej.2013.03.129

    Article  CAS  Google Scholar 

  71. Terzyk AP (2003) Further insights into the role of carbon surface functionalities in the mechanism of phenol adsorption. J Colloid Interface Sci 268:301–329. doi:10.1016/S0021-9797(03)00690-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by CIRAD and the SCAC program of the French embassy in Yaoundé-Cameroon. The authors are grateful to Odilon Changotade (2iE), Gilles Hernandez, Yonko Gorand, Eric Bèche, Danielle Perarnau (PROMES-CNRS), Cyril Vallicari (IEM), Ghislaine Volle and Jeremy Valette (CIRAD) for their great respective support on materials characterization. Special thanks are also extended to Anne Julbe and André Ayral for fruitful discussions and for providing the commercial titania sol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Richardson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 678 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chekem, C.T., Richardson, Y., Drobek, M. et al. Effective coupling of phenol adsorption and photodegradation at the surface of micro-and mesoporous TiO2-activated carbon materials. Reac Kinet Mech Cat 122, 1297–1321 (2017). https://doi.org/10.1007/s11144-017-1265-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1265-0

Keywords

Navigation