Skip to main content
Log in

Catalysis of vegetable oil transesterification by Sn(II)-exchanged Keggin heteropolyacids: bifunctional solid acid catalysts

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Keggin heteropolyacid protons (i.e., H3PW12O40, H3PMo12O40, H4SiW12O40) were partially exchanged with Sn(II) cations generating solid acid catalysts that were used for vegetable oil transesterification reactions. These catalysts have double acidity properties, i.e., Lewis acidity and Brønsted acidity that are suitable for the conversion of vegetable oil into biodiesel. The highest efficiency (ca. 100%) was achieved on the Sn1.2H0.6PW12O40-catalyzed transesterification reactions. The relationship between the catalytic activity and acidic properties was deeply discussed and the effects of main reaction parameters were assessed. The activity of the precursor HPA, tin salts and physical mixture were compared and confirmed a synergism between Sn(II) cations and PW12O40 3− anions. The reusability of catalyst was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Atabani AE, Silitonga AS, Badruddim IA, Mahilia TMI, Masjuk HH, Mekhilef S (2012) A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sust Energy Rev 16:2070–2093

    Article  Google Scholar 

  2. Couhan APS, Sarma AK (2011) Modern heterogeneous catalysts for biodiesel production: a comprehensive review. Renew Sust Energy Rev 15:4378–4399

    Article  Google Scholar 

  3. Avhad MR, Marchetti JM (2015) A review on recent advancement in catalytic materials for biodiesel production. Renew Sust Energy Rev 50:696–718

    Article  CAS  Google Scholar 

  4. Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG Jr (2005) Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res 244:5353–5363

    Article  Google Scholar 

  5. Haas MJ (2005) Improving the economics of biodiesel production through the use of low value lipids as feedstocks: vegetable oil soapstock. Fuel Process Technol 86:1087–1096

    Article  CAS  Google Scholar 

  6. Khan TMY, Atabani AE, Badruddin IA, Badarudin A, Khayoon MS, Triwahyono S (2014) Recent scenario and technologies to utilize non-edible oils for biodiesel production. Renew Sust Energy Rev 37:840–851

    Article  CAS  Google Scholar 

  7. Lee AF, Wilson K (2015) Recent developments in heterogeneous catalysis for the sustainable production biodiesel of biodiesel. Catal Today 242:3–18

    Article  CAS  Google Scholar 

  8. Lee D-W, Lee K-Y (2014) Heterogeneous solid acid catalysts for esterification of free fatty acids. Catal Surv Asia 18:55–74

    Article  CAS  Google Scholar 

  9. Sivasamy A, Cheah KY, Fornasiero P, Kemausuor F, Zinoviev S, Miertus S (2009) Catalytic applications in the production of biodiesel from vegetable oils. ChemSusChem 2:278–300

    Article  CAS  Google Scholar 

  10. Kulkarni MG, Gopinath R, Meher LC, Dala AK (2006) Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification. Green Chem 8:1056–1062

    Article  CAS  Google Scholar 

  11. Kozhevnikov IV (1998) Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem Rev 98:171–198

    Article  CAS  Google Scholar 

  12. Timofeeva MN (2003) Review acid catalysis by heteropoly acids. Appl Catal A 256:25–27

    Article  Google Scholar 

  13. Izumi Y, Ogawa M, Urabe K (1995) Alkali metal salts and ammonium salts of Keggin-type heteropolyacids and solid acid-catalysts for liquid-phase Friedel-Crafts reactions. Appl Catal A 132:28–30

    Article  Google Scholar 

  14. Su F, Guo Y (2014) Advancements in solid acid catalysts for biodiesel production. Green Chem 16:2934–2957

    Article  CAS  Google Scholar 

  15. Brahmkhatri V, Patel A (2011) 12-Tungstophosphoric acid anchored to SBA-15: an efficient, environmentally benign reusable catalyst for biodiesel production by esterification of free fatty acids. Appl Catal A 403(1–2):161–172

    Article  CAS  Google Scholar 

  16. Patel A, Brahmkhatri V (2012) Esterification of lauric acid with butanol-1 over H3PW12O40 supported on MCM-41. Fuel 102:72–77

    Article  Google Scholar 

  17. Sharma P, Vyas S, Patel A (2004) Heteropolyacid supported onto neutral alumina: characterization and esterification of 1° and 2° alcohol. J Mol Catal A 214:281–286

    Article  CAS  Google Scholar 

  18. Patel A, Narkhede N (2012) 12-Tungstophosphoric acid anchored to zeolite Hβ: synthesis, characterization, and biodiesel production by esterification of oleic acid with methanol. Energy Fuels 26(9):6025–6032

    Article  CAS  Google Scholar 

  19. Alcañiz-Monge J, Trautwein G, Marco-lozar JP (2013) Biodiesel production by acid catalysis with heteropolyacids supported on activated carbon fibers. Appl Catal A 468:432–441

    Article  Google Scholar 

  20. Melero JA, Iglesias J, Morales G (2009) Heterogeneous acid catalysts for biodiesel production: current status and future challenges. Green Chem 11:1285–1308

    Article  CAS  Google Scholar 

  21. Song D, An S, Sun Y, Guo Y (2016) Efficient conversion of levulinic acid or furfuryl alcohol into alkyl levulinates catalyzed by heteropoly acid and ZrO2 bifunctionalized organosilica nanotubes. J Catal 333:184–195

    Article  CAS  Google Scholar 

  22. Sharma YC, Singh B, Korstad J (2011) Advancements in solid acid catalysts for ecofriendly and economically viable synthesis of biodiesel. BioFuels Bioprod Bioref 5:69–92

    Article  CAS  Google Scholar 

  23. Chen X, Liu Y, Wang H, Yuan M, Wang X, Chen Y (2014) Effect of Cs content on Cs x H5−x PMo10V2O40 properties and oxidative catalytic activity on starch oxidation by H2O2. RSC Adv 4:11232–11239

    Article  CAS  Google Scholar 

  24. Nishimura T, Okuhara T, Misono M (1991) High catalytic activity of an insoluble acidic cesium salt of dodecatungstophosphoric acid for liquid-phase alkylation. Appl Catal A 73:L7–L11

    Article  CAS  Google Scholar 

  25. Okuhara T, Nishimura T, Misono M (1996) Novel microporous solid “superacids”: CsxH3-xPW12O40 (2 ≤ x ≤ 3). Stud Surf Sci Catal 101:581–590

    Article  CAS  Google Scholar 

  26. Narkhede N, Singh S, Patel A (2015) Recent progress on supported polyoxometalates for biodiesel synthesis via esterification and transesterification. Green Chem 17:89–107

    Article  CAS  Google Scholar 

  27. da Silva MJ, Chaves DC (2016) Tin-catalyzed urea alcoholysis with β-citronellol: a simple and selective synthesis of carbamates. Catal Lett 146:1517–1528

    Article  Google Scholar 

  28. Ferreira AB, Cardoso AL, da Silva MJ (2013) Novel and highly efficient SnBr 2-catalyzed esterification reactions of fatty acids: the notable anion ligand effect. Catal Lett 143:1240–1246

    Article  CAS  Google Scholar 

  29. Menezes FDL, Guimaraes MDO, da Silva MJ (2013) Highly selective SnCl2-catalyzed solketal synthesis at room temperature. Ind Eng Chem Res 52(47):16709–16713

    Article  CAS  Google Scholar 

  30. da Silva MJ, Guimaraes MO, Julio AA (2015) A highly regioselective and solvent-free Sn(II)-catalyzed glycerol ketals synthesis at room temperature. Catal Lett 145:769–776

    Article  Google Scholar 

  31. da Silva MJ, Julio AA, Dorigetto FCS (2015) Solvent free heteropolyacid-catalyzed glycerol ketalization at room temperature. RSC Adv 5:44499–44506

    Article  Google Scholar 

  32. da Silva MJ, da Silva ML, Figueiredo AP, Cardoso AL, Natalino R (2011) Effect of water on the ethanolysis of waste cooking soybean oil using a tin(II) chloride catalyst. J Am Oil Chem Soc 88:1431–1437

    Article  CAS  Google Scholar 

  33. Firouzabadi F, Jafari AA (2008) Cesium and aluminum salts of dodecatungstophosphoric acid as eco-friendly and efficient heterogeneous catalysts in organic synthesis: some recent advances. Curr Org Chem 12:233–256

    Article  CAS  Google Scholar 

  34. da Silva MJ, Liberto NA, Andrade LCD, Pereira UA (2016) Fe4(SiW12O40)3-catalyzed glycerol acetylation: synthesis of bioadditives by using highly active Lewis acid catalyst. J Mol Catal A 422:69–83

    Article  Google Scholar 

  35. Shimizu K-I, Furukawa H, Kobayashi N, Itaya Y, Satsuma A (2009) Effects of Brønsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose. Green Chem 11:1627–1632

    Article  CAS  Google Scholar 

  36. Pizzio LR, Vásquez PG, Cáceres CV, Blanco MN (2003) Supported Keggin type heteropoly compounds for ecofriendly reactions. Appl Catal A 256:125–139

    Article  CAS  Google Scholar 

  37. Satyarthi JK, Srinivas D, Ratnasamy P (2009) Estimation of free fatty acid content in oils, fats, and biodiesel by 1H NMR spectroscopy. Energy Fuels 23:2273–2277

    Article  CAS  Google Scholar 

  38. Kumar CR, Rao KTV, Prasad PSS, Lingaiah N (2011) Tin exchanged heteropoly tungstate: an efficient catalyst for benzylation of arenes with benzyl alcohol. J Mol Catal A 337:17–24

    Article  Google Scholar 

  39. Wang D, Lu S, Xiang Y, Jiang SP (2011) Self-assembly of HPW on Pt/C nanoparticles with enhanced electrocatalysis activity for fuel cell applications. Appl Catal B 103:311–317

    Article  CAS  Google Scholar 

  40. Zhu M, Gao X, Luo G, Dai B (2013) A novel method for synthesis of phosphomolybdic acid-modified Pd/C catalysts for oxygen reduction reaction. J Power Sources 225:27–33

    Article  CAS  Google Scholar 

  41. Shi W, Zhao J, Yuan X, Wang S, Wang X, Huo M (2012) Effects of Brønsted and Lewis acidities on catalytic activity of heteropolyacids in transesterification and esterification reactions. Chem Eng Technol 35:347–352

    Article  CAS  Google Scholar 

  42. Wang DJ, Fang ZD, Wei XH (2005) Preparation and thermal decomposition kinetics of polyoxometalate of ciprofloxacin with 12-tungstosilicic acid. Chin J Chem 23:1600–1606

    Article  CAS  Google Scholar 

  43. Hamad B, de Souza ROL, Sapaly G, Rocha MGC, de Oliveira PGP, Gonzalez WA, Sales EA, Essayem N (2008) Transesterification of rapeseed oil with ethanol over heterogeneous heteropolyacids. Catal Commun 10:92–97

    Article  CAS  Google Scholar 

  44. Kamalin AR, Divitini G, Ducati C, Fray DJ (2014) Transformation of molten SnCl2 to SnO2 nano-single crystals. Ceram Int 40:8533–8538

    Article  Google Scholar 

  45. Varala R, Narayana V, Kulakarni SR, Khan M, Alwarthan A, Adil SF (2016) Sulfated tin oxide (STO)-structural properties and application in catalysis: a review. Arabian J Chem 9:550–573

    Article  CAS  Google Scholar 

  46. Liu Y, Liu C-L, Wu H-Z, Dong W-S (2013) An efficient catalyst for the conversion of fructose into methyl levulinate. Catal Lett 143:1346–1353

    Article  CAS  Google Scholar 

  47. Song Y, Wang X, Qu Y, Huang C, Li Y, Chen B (2016) Efficient dehydration of fructose to 5-hydroxy-methylfurfural catalyzed by heteropolyacid salts. Catalysts 6(4):49

    Article  Google Scholar 

  48. Misono M (1987) Heterogeneous catalysis by heteropoly compounds of molybdenum and tungsten. Catal Rev 29(2–3):269–321

    Article  CAS  Google Scholar 

  49. Henderson A, Galeano G, Bernal R (1995) Field guide to the palms of the Americas. Princeton University Press, Princeton, p 352

    Google Scholar 

  50. Gonçalves CE, Laier LO, Cardoso AL, da Silva MJ (2012) Bioadditive synthesis from H3PW12O40-catalyed glycerol esterification with HOAc under mild reaction conditions. Fuel Process Technol 102:46–52

    Article  Google Scholar 

  51. Silva VWG, Laier LO, da Silva MJ (2010) Novel H3PW12O40-catalyzed esterification reactions of fatty acids at room temperatures for biodiesel production. Catal Lett 135:207–211

    Article  CAS  Google Scholar 

  52. da Silva MJ (2016) Soluble and solid supported Keggin heteropolyacids as catalysts in reactions for biodiesel production: challenges and recent advances. Curr Org Chem 20:1–20

    Article  Google Scholar 

  53. Misono M (2001) Unique acid catalysis of heteropoly compounds (heteropolyoxometalates) in the solid state. Chem Commun 13:1141–1152

    Article  Google Scholar 

  54. K-i Shimizu, Niimi K, Satsuma A (2008) Polyvalent-metal salts of heteropolyacid as catalyst for Friedel-Crafts alkylation reactions. Appl Catal A 349:1–5

    Article  Google Scholar 

  55. K-i Shimizu, Satsuma A (2011) Toward a rational control of solid acid catalysis for green synthesis and biomass conversion. Energy Environ Sci 4:3140–3153

    Article  Google Scholar 

  56. Cao F, Chen Y, Zhai F, Li J, Wang J, Wang X, Wang S, Zhu W (2008) Biodiesel production from high acid value waste frying oil catalyzed by superacid heteropolyacid. Biotechnol Bioeng 101:93–100

    Article  CAS  Google Scholar 

  57. Bokade VV, Ganapati D, Yadav GD (2009) Transesterification of edible and nonedible vegetable oils with alcohols over heteropolyacids supported on acid-treated clay. Ind Eng Chem Res 48:9408–9415

    Article  CAS  Google Scholar 

  58. Taimsalu P, Wood JL (1984) The far infrared spectra of alkyl tin chlorides. Spectrochim Acta 20:1043–1051

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from CAPES, CNPq and FAPEMIG (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcio José Da Silva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 625 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da Silva, M.J., Vilanculo, C.B., Teixeira, M.G. et al. Catalysis of vegetable oil transesterification by Sn(II)-exchanged Keggin heteropolyacids: bifunctional solid acid catalysts. Reac Kinet Mech Cat 122, 1011–1030 (2017). https://doi.org/10.1007/s11144-017-1258-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1258-z

Keywords

Navigation